[1]史小元,景新幸,曾敏,等.基于改进PNCC和i-vector的说话人识别鲁棒性[J].计算机工程与设计,2017(4):1071-1075.(Shi Xiao-yuan,Jing Xin-xing,Zeng Min,et al.Robustness of speaker recognition based on improved PNCC and i-vector[J].Computer Engineering and Design,2017(4):1071-1075.) [2]郑艳,高爽.基于自适应门限的分形维数语音端点检测[J].东北大学学报(自然科学版),2020,41(1):7-11.(Zheng Yan,Gao Shuang.Speech endpoint detection based on fractal dimension with adaptive threshold[J].Journal of Northeastern University (Natural Science),2020,41(1):7-11.) [3]Huang Z,Siniscalchi S M,Lee C H.A unified approach to transfer learning of deep neural networks with applications to speaker adaptation in automatic speech recognition[J].Neurocomputing,2016,218:448-459. [4]Kanagasundaram A.Speaker verification using i-vector features[D].Brisbane:Queensland University of Technology,2014. [5]Milton A,Roy S S,Selvi S T.SVM scheme for speech emotion recognition using MFCC feature[J].International Journal of Computer Applications,2014,69(9):34-39. [6]Schuller B,Burkhardt F.Learning with synthesized speech for automatic emotion recognition[C]// Proceedings of the IEEE International Conference on Acoustics Speech & Signal Processing.Dallas,2010:18-20. [7]Atasever U H.A novel unsupervised change detection approach based on reconstruction independent component analysis and ABC-Kmeans clustering for environmental monitoring[J].Environmental Monitoring and Assessment,2019,191:447. [8]Arthur D,Vassilvitskii S.K-means++:the advantages of carefull seeding[C]// Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans,2007:1027-1035. [9]Jain A K.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666. [10]邵明强,徐志京.基于改进 MFCC 特征的语音识别算法[J].微型机与应用,2017(21):52-54.(Shao Ming-qiang,Xu Zhi-jing.A speech recognition algorithm based on improved MFCC[J].Microcomputer & Its Applications,2017(21):52-54.) [11]Vergin R,O′Shaughnessy D,Gupta V.Compensated Mel frequency cepstrum coefficients[C]//IEEE International Conference on Acoustics.Atlanta,1996:323-326. [12]Likitha M S,Gupta S R R,Hasitha K,et al.Speech based human emotion recognition using MFCC[C]// 2017 International Conference on Wireless Communications,Signal Processing and Networking(WiSPNET).Chennai,2017:222-224. [13]Dahake P P,Shaw K,Malathi P.Speaker dependent speech emotion recognition using MFCC and support vector machine[C]// 2016 International Conference on Automatic Control and Dynamic Optimization Techniques(ICACDOT).Pune,2016:67-68. [14]Mansour A,Lachiri Z.A comparative study in emotional speaker recognition in noisy environment[C]// IEEE/ACS International Conference on Computer Systems & Applications.Hammamet,2017:980-986. [15]史水平,李世作.线性预测编码(LPC)技术及其在音频文件上的应用[J].现代电子技术,2004,27(4):21-23.(Shi Shui-ping,Li Shi-zuo.LPC technique and its application in audio file[J].Modern Electronic Technique,2004,27(4):21-23.) [16]Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [17]Zhang C,Li X,Li W,et al.A novel i-vector framework using multiple features and PCA for speaker recognition in short speech condition[C]// 2016 International Conference on Audio,Language and Image Processing(ICALIP).Shanghai,2016:499-503. [18]Kohonen T.Self-organized formation of topologically correct feature maps[J].Biological Cybernetics,1982,43(1):59-69. [19]Yang P,Wang D,Wei Z,et al.An outlier detection approach based on improved self-organizing feature map clustering algorithm[J].IEEE Access,2019,7:115914-115925. [20]Araujo A F R,Antonino V O,Guevara K L P.Self-organizing subspace clustering for high-dimensional and multi-view data[J].Neural Networks,2020,130:253-268.(上接第951页)体间存在较大的温差,且由中间辐射体带来的流动扰动使钢坯表面流速增加也对换热效果存在一定积极影响.3) 顶部中间辐射体为近似黑体,在充分预热后为炉内环境提供了稳定的辐射热源,相对钢坯表面的比表面积增加了6%,加热速度提升了16.7%.