Two-Stage U-Net Coronary Artery Segmentation Based on CTA Images
WANG Lu1, YANG Xiao-fan1, WANG Qian-jin1, XU Li-sheng2,3
1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China; 2. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; 3. Neusoft Research of Intelligent Healthcare Technology Co., Ltd., Shenyang 110167, China.
WANG Lu, YANG Xiao-fan, WANG Qian-jin, XU Li-sheng. Two-Stage U-Net Coronary Artery Segmentation Based on CTA Images[J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 792-800.
[1]Long J,Shelhamer E,Darrell T.Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,2015:3431-3440. [2]Ronneberger O,Fischer P,Brox T.U-Net:convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich:Springer,2015:234-241. [3]iek ,Abdulkadir A,Lienkamp S S,et al.3D U-Net:learning dense volumetric segmentation from sparse annotation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich:Springer,2016:424-432. [4]Oktay O,Schlemper J,Folgoc L L,et al.Attention U-Net:learning where to look for the pancreas[EB/OL].[2020-07-23].https://arxiv.org/abs/1804.03999. [5]Zhou Z,Siddiquee M M R,Tajbakhsh N,et al.UNet++:a nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Cham:Springer,2018:3-11. [6]Yu Q,Xie L,Wang Y,et al.Recurrent saliency transformation network:incorporating multi-stage visual cues for small organ segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:8280-8289. [7]陈浩,秦志光,丁熠.一种两阶段的由粗到细的多模态脑肿瘤分割框架[J].电子科技大学学报,2020,49(4):590-596.(Chen Hao,Qin Zhi-guang,Ding Yi.A two-stage coarse-to-fine multimodal brain tumor segmentation framework[J].Journal of University of Electronic Science and Technology of China,2020,49(4):590-596.) [8]Tan Y,Liu M,Chen W,et al.DeepBranch:deep neural networks for branch point detection in biomedical images[J].IEEE Transactions on Medical Imaging,2020,39(4):1195-1205. [9]Yang B,Chen W,Luo H,et al.Neuron image segmentation via learning deep features and enhancing weak neuronal structures[J].IEEE Journal of Biomedical and Health Informatics,2020,25(5):1634-1645. [10]Shen Y,Fang Z,Gao Y,et al.Coronary arteries segmentation based on 3D FCN with attention gate and level set function[J].IEEE Access,2019,7:42826-42835. [11]Chen Y C,Lin Y C,Wang C P,et al.Coronary artery segmentation in cardiac CT angiography using 3D multi-channel U-Net [EB/OL].[2020-07-23].https://arxiv.org/abs/1907.12246. [12]Kong B,Wang X,Bai J,et al.Learning tree-structured representation for 3D coronary artery segmentation[J].Computerized Medical Imaging and Graphics,2020,80:101688. [13]Huang W,Huang L,Lin Z,et al.Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images[C]//40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Honolulu, 2018:608-611. [14]Li R Q,Bian G B,Zhou X H,et al.CAU-net:a novel convolutional neural network for coronary artery segmentation in digital subtraction angiography[C]// International Conference on Neural Information Processing.Cham:Springer,2020:185-196. [15]Tian F,Gao Y,Fang Z,et al.Automatic coronary artery segmentation algorithm based on deep learning and digital image processing[J].Applied Intelligence,2021,51:8881-8895. [16]Huang G,Liu Z,Van Der Maaten L,et al.Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:4700-4708. [17]Ioffe S,Szegedy C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning.Lille:PMLR,2015:448-456. [18]He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:770-778. [19]Guo C,Szemenyei M,Yi Y,et al.SA-UNet:spatial attention u-net for retinal vessel segmentation[C]//25th International Conference on Pattern Recognition.Milano,2020:1236-1242. [20]Trebing K,Stan`czyk T,Mehrkanoon S.SmaAt-UNet:precipitation nowcasting using a small attention-UNet architecture[J].Pattern Recognition Letters,2020,145:178-186.