Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (10): 1386-1393.DOI: 10.12068/j.issn.1005-3026.2024.10.003
• Information & Control • Previous Articles
Run-da JIA1(), Dong-hao ZHANG1, Jun ZHENG1, Kang LI2
Received:
2023-05-29
Online:
2024-10-31
Published:
2024-12-31
Contact:
Run-da JIA
About author:
JIA Run-da,E-mail: jiarunda@ise.neu.edu.cnCLC Number:
Run-da JIA, Dong-hao ZHANG, Jun ZHENG, Kang LI. Application of Reinforcement Learning Based on Hybrid Model in Optimal Control of Flotation Process[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1386-1393.
基于混合模型的SAVED算法 |
---|
1.初始化:基于浮选半实物仿真平台初始化数据 2.当 3. 基于误差数据 4. 当 5. 当采样动作 6. 在动作范围内随机生成序列; 7. 基于回报与约束评价动作序列; 8. 选取动作序列更新交叉熵法分布; 9. 当 10. 将动作加入到动作序列评价; 11. 执行t到t+T之间的动作序列 12. 记录结果: |
Table 1 Algorithm of SAVED
基于混合模型的SAVED算法 |
---|
1.初始化:基于浮选半实物仿真平台初始化数据 2.当 3. 基于误差数据 4. 当 5. 当采样动作 6. 在动作范围内随机生成序列; 7. 基于回报与约束评价动作序列; 8. 选取动作序列更新交叉熵法分布; 9. 当 10. 将动作加入到动作序列评价; 11. 执行t到t+T之间的动作序列 12. 记录结果: |
CEM迭代更新算法 |
---|
1. 初始化参数:根据浮选过程先验知识初始化参数集合; 2. 生成样本:使用参数集合,随机抽样生成样本; 3. 评估样本:对于生成的样本,使用 4. 选择优秀样本:根据评估的结果,在当前样本中选择一定比例优秀样本; 5. 拟合新参数:通过选出的优秀样本,对参数集合进行更新; 6. 迭代优化:重复上述步骤2~5,直到满足停止条件. |
Table 2 CEM iterative update algorithm
CEM迭代更新算法 |
---|
1. 初始化参数:根据浮选过程先验知识初始化参数集合; 2. 生成样本:使用参数集合,随机抽样生成样本; 3. 评估样本:对于生成的样本,使用 4. 选择优秀样本:根据评估的结果,在当前样本中选择一定比例优秀样本; 5. 拟合新参数:通过选出的优秀样本,对参数集合进行更新; 6. 迭代优化:重复上述步骤2~5,直到满足停止条件. |
参数 | 参数值 |
---|---|
PEM模型数 | 5 |
模型层数 | 5 |
神经元数量 | 512 |
批次数量 | 64 |
迭代次数 | 200 |
β参数 | 0.8 |
Table 3 Parameter list of PEM
参数 | 参数值 |
---|---|
PEM模型数 | 5 |
模型层数 | 5 |
神经元数量 | 512 |
批次数量 | 64 |
迭代次数 | 200 |
β参数 | 0.8 |
误差类型 | 机理模型 | PEM模型 | 混合模型 |
---|---|---|---|
RMSE | 0.18 | 0.34 | 0.002 0 |
MAE | 0.10 | 0.28 | 0.001 5 |
Table 4 Comparison of prediction accuracy
误差类型 | 机理模型 | PEM模型 | 混合模型 |
---|---|---|---|
RMSE | 0.18 | 0.34 | 0.002 0 |
MAE | 0.10 | 0.28 | 0.001 5 |
1 | 范继涛,朱勃霖.矿产资源节约与综合利用先进技术推广的思考[J].中国矿业,2013,22(11):23-26. |
Fan Ji‑tao, Zhu Bo‑lin.Thinking on advanced technologies promotion of mineral resources saving and comprehensive utilization[J].China Mining Magazine,2013,22(11):23-26. | |
2 | Xue W Q, Fan J L, Jiang Y.Flotation process with model free adaptive control[C]//IEEE International Conference on Information and Automation (ICIA).Macau:IEEE,2017:442-447. |
3 | Osthuizen D J, le Roux J D, Craig I K.A dynamic flotation model to infer process characteristics from online measurements[J].Minerals Engineering,2021,167:106878. |
4 | Rojas D, Cipriano A.Model based predictive control of a rougher flotation circuit considering grade estimation in intermediate cells[J].Dyna,2011,78(166):29-37. |
5 | 李金娜,高溪泽,柴天佑,等.数据驱动的工业过程运行优化控制[J].控制理论与应用,2016,33(12):1584-1592. |
Li Jin‑na, Gao Xi‑ze, Chai Tian‑you,et al.Data‑driven operational optimization control of industrial processes[J].Control Theory & Applications,2016,33(12):1584-1592. | |
6 | Jiang Y, Fan J L, Chai T Y,et al.Data‑driven flotation industrial process operational optimal control based on reinforcement learning[J].IEEE Transactions on Industrial Informatics,2018,14(5):1974-1989. |
7 | Nakhaei F, Irannajad M, Mohammadnejad S.A comprehensive review of froth surface monitoring as an aid for grade and recovery prediction of flotation process.Part B:texture and dynamic features[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2023,45(3):7812-7834. |
8 | Quintanilla P, Neethling S J, Brito‑Parada P R.Modelling for froth flotation control:a review[J].Minerals Engineering,2021,162:106718 |
9 | Sun B, Yang W, He M F.An integrated multi‑mode model of froth flotation cell based on fusion of flotation kinetics and froth image features[J].Minerals Engineering,2021,172:107169. |
10 | Quintanilla P, Neethling S J, Navia D.A dynamic flotation model for predictive control incorporating froth physics.part I:model development[J].Minerals Engineering,2021,173:107192. |
11 | Quintanilla P, Neethling S J, Mesa D,et al.A dynamic flotation model for predictive control incorporating froth physics.part II:model calibration and validation[J].Minerals Engineering,2021,173:107190. |
12 | Abbeel P, Quigley M, Ng A Y.Using inaccurate models in reinforcement learning[C]//Proceedings of the 23rd International Conference on Machine Learning.Pittsburgh: 2006:1-8. |
13 | Baranes A, Oudeyer P Y.Active learning of inverse models with intrinsically motivated goal exploration in robots[J].Robotics and Autonomous Systems,2013,61(1):49-73. |
14 | Xu H, Wang K, Li X L.Multi‑objective optimization control of flotation process based on policy iteration[C]//2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS).Xiangtan:IEEE,2023:417-422. |
15 | Quintanilla P, Navia D, Neethling S J,et al.Economic model predictive control for a rougher froth flotation cell using physics‑based models[J].Minerals Engineering,2023,196:108050. |
16 | Thananjeyan B, Balakrishna A, Rosolia U,et al.Safety augmented value estimation from demonstrations (saved):safe deep model‑based rl for sparse cost robotic tasks[J].IEEE Robotics and Automation Letters,2020,5(2):3612-3619. |
17 | Bailey M, Gomez C O, Finch J A.A method of bubble diameter assignment[J].Minerals Engineering,2005,18(1):119-123. |
18 | Panjipour R, Karamoozian M, Albijanic B.Bubble size distributions in gas‑liquid‑solid systems and their influence on flotation separation in a bubble column[J].Chemical Engineering Research and Design,2021,167:96-106. |
[1] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[2] | ZHAO Zhao, YUAN Pei-xin, TANG Jun-wen, CHEN Jin-lin. Agent Path Planning Algorithm Based on Improved SNN-HRL [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1548-1555. |
[3] | ZHANG Xue-feng, WANG Zhao-yi. Automatic Lane Change Decision Model Based on Dueling Double Deep Q-network [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1369-1376. |
[4] | LIU Jun, DAI Fu-cheng, XIN Ning. Virtual Machine Placement Strategy Based on Multi-objective Optimization [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 609-617. |
[5] | MENG Lu, SHEN Ning, QI Yin-qiao, ZHANG Hao-yuan. Control Algorithm of Three-Dimensional Game Based on Reinforcement Learning [J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 478-483. |
[6] | LI Xiong-fei, ZHOU Jin-nan, ZHANG Xiao-li. Research on Advertising Conversion Rate Based on Hybrid Model [J]. Journal of Northeastern University Natural Science, 2019, 40(7): 942-947. |
[7] | YAN Shi-jie, ZHAO Xiao-li, GAO Wen-zhong, HAN Yi-ming. Modeling and Optimal Control for Microgrid Using Matrix Perturbation Theory [J]. Journal of Northeastern University Natural Science, 2018, 39(9): 1217-1221. |
[8] | YANG Ming, LUO Yan-hong, WANG Yi-he. Policy Iteration Algorithm for Nonzero-Sum Games with Unknown Models [J]. Journal of Northeastern University Natural Science, 2015, 36(3): 318-322. |
[9] | WANG Tao, LUO Yanhong. Optimal Control for Nonlinear DiscreteTime Time Delay Systems with Saturating Actuators [J]. Journal of Northeastern University Natural Science, 2014, 35(4): 461-464. |
[10] | PAN Feng, LIU Lu, XUE Dingyu. Optimal FractionalOrder PIλDμ Network Delay Controller [J]. Journal of Northeastern University Natural Science, 2014, 35(10): 1382-1385. |
[11] | YU Liang, MAO Zhizhong, JIA Runda. Hybrid Model Based on ICALSSVM for Copper Extraction [J]. Journal of Northeastern University Natural Science, 2014, 35(10): 1369-1372. |
[12] | YANG Dongmei, XU Wenming, CUI Lei. H∞ Optimal Control by Output Feedback for Singular Systems [J]. Journal of Northeastern University, 2013, 34(4): 461-464. |
[13] | YUAN Qingyun, WANG Fuli, HE Dakuo. Hybrid Modeling Method of Forecasting Gold Production in the Hydrometallurgy Process [J]. Journal of Northeastern University, 2013, 34(3): 308-311. |
[14] | LIU Tan, GAO Xianwen, WANG Lina. Hybrid Modeling Method of Comprehensive Energy Consumption for Oil and Gas Production Process [J]. Journal of Northeastern University(Natural Science), 2013, 34(11): 1525-1528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||