Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (12): 1696-1705.DOI: 10.12068/j.issn.1005-3026.2024.12.004
• Information & Control • Previous Articles
Ai-ping YANG(), Si-jie FANG, Ming-fu SHAO, Teng-fei ZHANG
Received:
2023-06-06
Online:
2024-12-10
Published:
2025-03-18
Contact:
Ai-ping YANG
CLC Number:
Ai-ping YANG, Si-jie FANG, Ming-fu SHAO, Teng-fei ZHANG. Transformer-based Multi-scale Underwater Image Enhancement Network[J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1696-1705.
方法 | Test-910 | Test-R90 | Test-UIQS | ||||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | US | UCIQE | UIQM | |
Input | 17.24 | 0.79 | 16.31 | 0.79 | 1.00 | 0.48 | 0.84 |
fusion-based[ | 21.83 | 0.83 | 17.83 | 0.82 | 0.62 | 1.22 | |
Retinex-based[ | 20.06 | 0.82 | 18.09 | 0.83 | 2.60 | 0.71 | 1.14 |
MMLE[ | 22.34 | 0.85 | 18.44 | 0.85 | 3.00 | 0.64 | 1.34 |
FUnIE-GAN[ | 0.85 | 17.64 | 0.79 | 1.60 | 0.55 | 0.81 | |
UGAN[ | 20.76 | 0.80 | 17.32 | 0.77 | 1.40 | 0.51 | 0.77 |
Water-Net[ | 21.41 | 0.83 | 0.87 | 2.40 | 0.56 | 0.97 | |
Ucolor[ | 20.52 | 0.81 | 18.41 | 0.85 | 2.10 | 0.53 | 0.88 |
MTransNet | 23.47 | 19.52 | 2.50 |
Table 1 Objective evaluation results of comparative methods
方法 | Test-910 | Test-R90 | Test-UIQS | ||||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | US | UCIQE | UIQM | |
Input | 17.24 | 0.79 | 16.31 | 0.79 | 1.00 | 0.48 | 0.84 |
fusion-based[ | 21.83 | 0.83 | 17.83 | 0.82 | 0.62 | 1.22 | |
Retinex-based[ | 20.06 | 0.82 | 18.09 | 0.83 | 2.60 | 0.71 | 1.14 |
MMLE[ | 22.34 | 0.85 | 18.44 | 0.85 | 3.00 | 0.64 | 1.34 |
FUnIE-GAN[ | 0.85 | 17.64 | 0.79 | 1.60 | 0.55 | 0.81 | |
UGAN[ | 20.76 | 0.80 | 17.32 | 0.77 | 1.40 | 0.51 | 0.77 |
Water-Net[ | 21.41 | 0.83 | 0.87 | 2.40 | 0.56 | 0.97 | |
Ucolor[ | 20.52 | 0.81 | 18.41 | 0.85 | 2.10 | 0.53 | 0.88 |
MTransNet | 23.47 | 19.52 | 2.50 |
1 | Jiang Q P, Gu Y S, Li C Y,et al.Underwater image enhancement quality evaluation:benchmark dataset and objective metric[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(9):5959-5974. |
2 | Raveendran S, Patil M D, Birajdar G K.Underwater image enhancement:a comprehensive review,recent trends,challenges and applications[J].Artificial Intelligence Review,2021,54(7):5413-5467. |
3 | Hummel R.Image enhancement by histogram transformation[J].Computer Graphics and Image Processing,1977,6(2):184-195. |
4 | Reza A M.Realization of the contrast limited adaptive histogram equalization (CLAHE) for real‑time image enhancement[J].The Journal of VLSI Signal Processing Systems for Signal,Image,and Video Technology,2004,38(1):35-44. |
5 | Hitam M S, Yussof W N J H W, Awalludin E A,et al.Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]//2013 International Conference on Computer Applications Technology (ICCAT).Sousse,2013:1-5. |
6 | McGlamery B L.A computer model for underwater camera systems[J].Proceedings of the SPIE,1980,208:221-231. |
7 | Jaffe J S.Computer modeling and the design of optimal underwater imaging systems[J].IEEE Journal of Oceanic Engineering,1990,15(2):101-111. |
8 | Wang Y, Zhang J, Cao Y,et al.A deep CNN method for underwater image enhancement[C]//2017 IEEE International Conference on Image Processing (ICIP).Beijing,2017:1382-1386. |
9 | Islam M J, Xia Y Y, Sattar J.Fast underwater image enhancement for improved visual perception[J].IEEE Robotics and Automation Letters,2020,5(2):3227-3234. |
10 | Li C Y, Guo C L, Ren W Q,et al.An underwater image enhancement benchmark dataset and beyond[J].IEEE Transactions on Image Processing,2020,29:4376-4389. |
11 | Li C Y, Anwar S, Hou J H,et al.Underwater image enhancement via medium transmission‑guided multi‑color space embedding[J].IEEE Transactions on Image Processing,2021,30:4985-5000. |
12 | Qi Q, Zhang Y C, Tian F,et al.Underwater image co‑enhancement with correlation feature matching and joint learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(3):1133-1147. |
13 | Vaswani A, Shazeer N, Parmar N,et al. Attention is all you need[J].Advances in Neural Information Processing Systems,2017,30:6000-6010. |
14 | Liu Z, Mao H Z, Wu C Y,et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,2022:11976-11986. |
15 | Fan S J, Liang W, Ding D R,et al.LACN:a lightweight attention‑guided ConvNeXt network for low‑light image enhancement[J].Engineering Applications of Artificial Intelligence,2023,117:105632. |
16 | Liu Z, Lin Y T, Cao Y,et al.Swin Transformer:hierarchical vision Transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision.Montreal,2021:9992-10002. |
17 | Guo C L, Yan Q X, Anwar S,et al.Image dehazing Transformer with transmission‑aware 3D position embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,2022:5802-5810. |
18 | Jiang L M, Zhang C X, Huang M Y,et al.TSIT:a simple and versatile framework for image‑to‑image translation[C]//Computer Vision-ECCV 2020:16th European Conference Proceedings,Part III 16.Glasgow,2020:206-222. |
19 | Wang X T, Yu K, Dong C,et al.Recovering realistic texture in image super‑resolution by deep spatial feature transform[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:606-615. |
20 | Liu R S, Fan X, Zhu M,et al.Real‑world underwater enhancement:challenges,benchmarks,and solutions under natural light[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,30(12):4861-4875. |
21 | Ancuti C O, Ancuti C, De Vleeschouwer C,et al.Color balance and fusion for underwater image enhancement[J].IEEE Transactions on Image Processing,2018,27(1):379-393. |
22 | Fu X Y, Zhuang P X, Huang Y,et al.A retinex‑based enhancing approach for single underwater image[C]//2014 IEEE International Conference on Image Processing (ICIP).Paris,2014:4572-4576. |
23 | Zhang W D, Zhuang P X, Sun H H,et al.Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J].IEEE Transactions on Image Processing,2022,31:3997-4010. |
24 | Fabbri C, Islam M J, Sattar J.Enhancing underwater imagery using generative adversarial networks[C]//2018 IEEE International Conference on Robotics and Automation (ICRA).Brisbane,2018:7159-7165. |
[1] | Ji-hong LIU, Xi-xiong HUANG. Face Inpainting Model Based on Denoising Diffusion Probability Models [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1227-1234. |
[2] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[3] | Zhi WANG, Kun WANG, Meng-qing WANG. Super-resolution Reconstruction of Remote Sensing Image Based on Transformer of Multi-scale Feature Fusion [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1178-1184. |
[4] | Wei-wei LIU, Bing-jun LIU, Huan-qiang LIU, Ze-yuan LIU. Defect Identification Method for Laser Melting Deposition Process [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1150-1158. |
[5] | Tao REN, Xin-liang LIU, Hong-feng CHEN, Yan-lu MA. Segmented Estimation Method for Early Warning Magnitude Based on Convolutional Neural Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1073-1079. |
[6] | Hong-li LI, Hao-yu LIU, Rong-hua ZHANG, Yi CHENG. Emotional Classification Based on Multidimensional Feature Matrix and Improved Dense Connection Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 928-935. |
[7] | Ji-hong LIU, Lü-heng ZHANG, Hai-xu YANG. A Saturation Artifact Inpainting Algorithm for Cell Fluorescence Microscopic Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 921-927. |
[8] | Pei-yun XUE, Jing BAI, Nan ZHANG, Jian-xing ZHAO. VMD Based Binary Channels Speech Feature Map Extraction Algorithm for Dysarthria [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 793-801. |
[9] | Dong-hong HAN, Yan-ru KONG, Yi-meng ZHAN, Yuan LIU. Research on Emotion Recognition Method of Music Multimodal Data [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 776-785. |
[10] | Wei-qi ZHANG, Hui-ming WANG. Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 738-744. |
[11] | Peng SHAN, Lin ZHANG, Hong-ming XIAO, Yu-liang ZHAO. CT Diagnosis Method for Coronavirus Pneumonia with Integrated Multi-scale Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1673-1679. |
[12] | Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385. |
[13] | WEI Jian-yi, WU Jing-jing. Resource Allocation Algorithm in Industrial Internet of Things Based on Edge Computing [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1072-1078. |
[14] | YANG Xuan, HE Zhan-qi. Improved Two-layer BiLSTM Electrocardiosignal Segmentation Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1705-1711. |
[15] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||