Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (2): 42-49.DOI: 10.12068/j.issn.1005-3026.2025.20230264
• Materials & Metallurgy • Previous Articles Next Articles
Ke-fan YU1, Liang ZHAO1, Hui DONG1(), Yong-qing HE2
Received:
2023-09-08
Online:
2025-02-15
Published:
2025-05-20
Contact:
Hui DONG
CLC Number:
Ke-fan YU, Liang ZHAO, Hui DONG, Yong-qing HE. Effect of Initial Inclination Angle of Elastic Pillars on Heat Transfer Enhancement in Microchannel[J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 42-49.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
微通道宽度H/μm | 35w | 圆柱障碍物离壁面B的距离b/μm | 17.5w |
微通道长度L/μm | 150w | 圆柱障碍物直径d/μm | 3w |
柔性柱离流动入口的距离l/μm | 42w | 柔性柱宽度w/μm | 14 |
圆柱障碍物离流动入口的距离c/μm | 11w | 柔性柱高度h/μm | 13w |
柔性柱倾角θ | 0.2π ~ 0.8π |
Table 1 Geometric parameters for two-dimensional microchannels
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
微通道宽度H/μm | 35w | 圆柱障碍物离壁面B的距离b/μm | 17.5w |
微通道长度L/μm | 150w | 圆柱障碍物直径d/μm | 3w |
柔性柱离流动入口的距离l/μm | 42w | 柔性柱宽度w/μm | 14 |
圆柱障碍物离流动入口的距离c/μm | 11w | 柔性柱高度h/μm | 13w |
柔性柱倾角θ | 0.2π ~ 0.8π |
物性参数 | 数值 | 物性参数 | 数值 |
---|---|---|---|
密度/(kg·m-3) | 2 500 | 泊松比 | 0.48 |
弹性模量/MPa | 7 | 导热系数/(W·m-1·K-1) | 2.5 |
比热容/(J·kg-1·K-1) | 1 200 |
Table 2 Physical properties of elastic pillar material
物性参数 | 数值 | 物性参数 | 数值 |
---|---|---|---|
密度/(kg·m-3) | 2 500 | 泊松比 | 0.48 |
弹性模量/MPa | 7 | 导热系数/(W·m-1·K-1) | 2.5 |
比热容/(J·kg-1·K-1) | 1 200 |
网格数 | Nutot | 误差/% | 计算时间/h |
---|---|---|---|
579 59 | 33.199 | 12.3 | 8.65 |
103 348 | 33.441 | 11.7 | 22.47 |
128 000 | 37.555 | 0.8 | 34.43 |
148 102 | 37.867 | 0.0 | 48.98 |
Table 3 Verification of grid independence for elastic pillar with an inclination angle of 0.5π
网格数 | Nutot | 误差/% | 计算时间/h |
---|---|---|---|
579 59 | 33.199 | 12.3 | 8.65 |
103 348 | 33.441 | 11.7 | 22.47 |
128 000 | 37.555 | 0.8 | 34.43 |
148 102 | 37.867 | 0.0 | 48.98 |
1 | Fu C J, Wang J G, Zhao T L, et al. Experimental study on the influence factors of flow velocity structure and turbulent characteristics in open channel with biomimetic grass[J]. Advances in Civil Engineering, 2021(1): 5512536. |
2 | Ali S, Habchi C, Menanteau S, et al. Heat transfer and mixing enhancement by free elastic flaps oscillation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 250-264. |
3 | Kurzthaler C, Brandão R, Schnitzer O, et al. Shape of a tethered filament in various low-Reynolds-number flows[J]. Physical Review Fluids, 2023(8): 014101. |
4 | Gallegos R K B, Sharma R N. Heat transfer performance of flag vortex generators in rectangular channels[J]. International Journal of Thermal Sciences, 2019, 137: 26-44. |
5 | Gallegos R K B, Sharma R N. Small flags in rectangular channels: dynamics and mean wake characteristics[J]. International Journal of Mechanical Sciences, 2019, 155: 518-535. |
6 | Mirzaee H, Dadvand A, Mirzaee I, et al. Heat transfer enhancement in microchannels using an elastic vortex generator[J]. Journal of Enhanced Heat Transfer, 2012, 19(3): 199-211. |
7 | Ghalambaz M, Jamesahar E, Ismael M A, et al. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity[J]. International Journal of Thermal Sciences, 2017, 111: 256-273. |
8 | Wang J S, Wang X, Liu X L. Numerical investigation on flow behavior and heat transfer feature of flexible wings located at the bottom of a two-dimensional channel[J]. Applied Thermal Engineering, 2022, 206: 118112. |
9 | Lee J B, Park S G, Kim B, et al. Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow[J]. International Journal of Heat and Mass Transfer, 2017, 107: 391-402. |
10 | Chen Y J, Yang J, Liu Y Z, et al. Heat transfer enhancement in a poiseuille channel flow by using multiple wall-mounted flexible flags[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120447. |
11 | Ali S, Menanteau S, Habchi C, et al. Heat transfer and mixing enhancement by using multiple freely oscillating flexible vortex generators[J]. Applied Thermal Engineering, 2016, 105: 276-289. |
12 | Park S G. Heat transfer enhancement by a wall-mounted flexible vortex generator with an inclination angle[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119053. |
13 | Lee J B, Park S G, Sung H J. Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1003-1015. |
14 | Kang M S, Park S G, Dinh C T. Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123518. |
15 | Dadvand A, Hosseini S, Aghebatandish S, et al. Enhancement of heat and mass transfer in a microchannel via passive oscillation of a flexible vortex generator[J]. Chemical Engineering Science, 2019, 207: 556-580. |
16 | Hosseini S, Aghebatandish S, Dadvand A, et al. An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing[J]. Chemical Engineering Journal, 2021, 405: 126652. |
17 | Jing D L, Zhan X K. Numerical studies on the hydraulic and mixing performances of fluid flow around a cylinder in microchannel with vertical flexible flag[J]. Chemical Engineering Journal, 2022, 430: 133009. |
18 | Karniadakis G, Beskok A, Aluru N R. Microflows and nanoflows: fundamentals and simulation[C]// Interdisciplinary Applied Mathematics Series. Berlin: Springer Science Business Media, 2005: 1-61. |
19 | Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253. |
20 | Done J, Huerta A, Rodrguez-Ferran A. Chapter 14: arbitrary Lagrangian-Eulerian methods[M]//Encyclopedia of Computational Mechanics. [S. l.]:John Wiley & Son, 2004: 1-25. |
21 | Tuković Ž, Jasak H. Updated Lagrangian finite volume solver for large deformation dynamic response of elastic body[J].Transactions of Famena, 2017, 31: 55-70. |
22 | Attard M M. Finite strain– isotropic hyperelasticity[J]. International Journal of Solids and Structures, 2003, 40(17): 4353-4378. |
23 | Celik I B, Ghia U, Roache P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001. |
24 | Amini Y, Habibi S E. Effects of multiple flexible vortex generators on the hydrothermal characteristics of a rectangular channel[J]. International Journal of Thermal Sciences, 2022, 175: 107454. |
25 | Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[C]// Fluid-Structure Interaction. Berlin, Heidelberg: Springer, 2006: 371-385. |
[1] | Shu-hong WANG, Ming-zhu REN, Shi-yu LI, Fu-rui DONG. Control of Unequal Strength Grouting Deformation During Close Distance Crossing of an Existing Station [J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 126-135. |
[2] | Zhong-zheng LI, Zhao-xia WU, Jin-yang WANG, Zeng-xin KANG. Numerical Simulation of Mass and Heat Transfer in Iron Ore Sintering Process [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 35-43. |
[3] | Xi YUAN, Ming-xu MA, Jie CHEN, Zhe-ying WANG. Numerical Simulation Study on Spindle Cooling Device for Oil-Free Scroll Vacuum Pumps [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 92-98. |
[4] | Zhi-qun ZHENG, Xian-zhen HUANG, Zhi-yuan JIANG, Xing-lin MIAO. Flow and Heat Transfer Characteristics and Structure Optimization of Helically Corrugated Tubes Based on Kriging Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 992-1001. |
[5] | Hui DONG, Ke-fan YU, Liang ZHAO, Jin WANG. Numerical Simulation of Flow and Heat Transfer of Hybrid Nanofluids in Manifold Microchannel Heat Sink [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 960-966. |
[6] | Jin-song ZUO, Yue-zhong DI, Dian-qiao GENG. Numerical Simulation of Multiple Physical Fields for the Preparation of Magnesium Hydroxide by Electrodeposition [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 652-659. |
[7] | Jin-rui ZHANG, Xi-wen YAO, Kai-li XU, Xiu SUN. Optimization of CO Sensor Carrying Position of Mine Intelligent Inspection Vehicle [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 721-728. |
[8] | Ren WEI, Zhi-jian SU, Yi-da DU, Yan-bin WANG. Numerical Simulation of Molten Steel Flow, Heat Transfer and Solidification in Slab Mold Under Composite Magnetic Field [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 514-522. |
[9] | Da-xue FU, Yue-zhong DI, Yao-wu WANG. Optimization of Mg Production by Pidgeon Process Based on Heat Transfer in the Bed [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 523-529. |
[10] | Yu-meng WANG, Kai GUAN, Wan-cheng ZHU, Hong-lei LIU. Mining-Induced Surrounding Rock Instability and Surface Subsidence Based on Combination of In-situ Monitoring and Numerical Modelling [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 234-243. |
[11] | Gang LI, Lei ZHOU, Xiao-yu ZHANG, Kai ZHANG. Determination Method of Pressure Relief Area for Dust Explosion of Connected Equipment [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 276-281. |
[12] | Bai-ling CHEN, Yue YIN, Hai-yang GAO, Lian-guang WANG. Connection Between Precast Steel-Concrete-Steel Sandwich Slab and Column and Finite Element Analysis [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1476-1484. |
[13] | HOU Jun-xu, YANG Tian-hong, MA Kai, ZHAO Yong. More Than 100 Million DOF Numerical Simulation Technique and Its Engineering Application [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1298-1308. |
[14] | MENG Qing-you, YUAN Zhi-tao, YANG Jian-chao. Flocs Formation Mechanism in Hydrophobic Flocculation Flotation of Fine Wolframite [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1002-1008. |
[15] | DUAN Shao-pei, LI Bao-kuan, MU Yong-hong, RONG Wen-jie. Numerical Simulation of Gas-Solid Heat Transfer and Moisture Evaporation in Preheating Shaft Kiln [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 626-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||