Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (2): 104-110.DOI: 10.12068/j.issn.1005-3026.2025.20230266
• Mechanical Engineering • Previous Articles
Qi LI(), Chao ZHANG, Tian-biao YU, Wan-shan WANG
Received:
2023-09-24
Online:
2025-02-15
Published:
2025-05-20
Contact:
Qi LI
CLC Number:
Qi LI, Chao ZHANG, Tian-biao YU, Wan-shan WANG. Gravity/Inertia Force Error Compensation for Optical Free-Form Surface Milling Machines[J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 104-110.
1 | Nguyen V L, Lin C Y, Kuo C H. Gravity compensation design of delta parallel robots using gear-spring modules[J]. Mechanism and Machine Theory, 2020, 154: 104-135. |
2 | Han Z Y, Wang H, Shao Z X, et al. Finite difference method-based calculation of gravity deformation curve for the large-span beam of heavy-duty vertical lathe[J]. Advances in Mechanical Engineering, 2016, 8(4): 1-8. |
3 | Huang L T, Yamada H, Ni T, et al. A master-slave control method with gravity compensation for a hydraulic teleoperation construction robot [J]. Advances in Mechanical Engineering, 2017, 9(7): 1-11. |
4 | Miao E M, Liu Y, Liu H, et al. Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool[J]. International Journal of Machine Tools and Manufacture, 2015, 97(7): 50-59. |
5 | Andolfatto L, Mayer J R R, Lavernhe S. Adaptive Monte Carlo applied to uncertainty estimation in five axis machine tool link errors identification with thermal disturbance[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7/8): 618-627. |
6 | Qiao Y, Chen Y P, Yang J X, et al. A five-axis geometric errors calibration model based on the common perpendicular line (CPL) transformation using the product of exponentials (POE) formula[J]. International Journal of Machine Tools and Manufacture, 2017, 118: 49-60. |
7 | Huang Y B, Fan K C, Lou Z F, et al. A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles[J]. International Journal of Machine Tools and Manufacture, 2020, 151: 103527. |
8 | Abdulshahed A M, Longstaff A P, Fletcher S, et al. Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model[J]. Journal of Manufacturing Systems, 2016, 41(8): 130-142. |
9 | Fan J W, Tao H H, Pan R, et al. Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(1): 13-24. |
10 | Jiang Z X, Song B, Zhou X D, et al. Single setup identification of component errors for rotary axes on five-axis machine tools based on pre-layout of target points and shift of measuring reference[J]. International Journal of Machine Tools and Manufacture, 2015, 98(2): 1-11. |
11 | Zhong L, Bi Q Z, Wang Y H. Volumetric accuracy evaluation for five-axis machine tools by modeling spherical deviation based on double ball-bar kinematic test[J]. International Journal of Machine Tools and Manufacture, 2017, 122(4): 106-119. |
12 | Xing K L, Achiche S, Mayer J R R. Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures[J]. International Journal of Machine Tools and Manufacture, 2019, 138(1): 80-93. |
13 | Li Y, Zhao J, Ji S J. A reconstructed variable regression method for thermal error modeling of machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 3673-3684. |
14 | Xiang S T, Altintas Y. Modeling and compensation of volumetric errors for five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2016, 101(5): 65-78. |
15 | Blaser P, Pavliček F, Mori K, et al. Adaptive learning control for thermal error compensation of 5-axis machine tools[J]. Journal of Manufacturing Systems, 2017, 44(2): 302-309. |
16 | Li Q, Yu T B, Wang Z X, et al. Design of optical free-form surface milling machine based on mechanical shunt and dynamic analysis[J]. Applied Sciences, 2021, 11(24): 11764. |
[1] | Xin YANG, Zhen-gang FAN, Gen-bao ZHANG, Yan RAN. Finite Element Analysis of Thermal Deformation of Worm Gears’ Meta-action in Numerical Control Turntables [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 76-84. |
[2] | LI Qi, YU Tian-biao, WANG Wan-shan. Research on Static and Dynamic Characteristics of the Optical Free-Form Milling Machine [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 674-680. |
[3] | HUANG Zhi, LIU Yong-chao, LIAO Rong-jie, CAO Xu-jun. Thermal Error Modeling of Numerical Control Machine Tools Based on Neural Network Neural Network by Optimized SSO Algorithm [J]. Journal of Northeastern University(Natural Science), 2021, 42(11): 1569-1578. |
[4] | KANG Cheng-ming, ZHAO Chun-yu, FU Li-xin. Thermal Error Modeling of Machining Center Spindle Based on Physical Modeling Method [J]. Journal of Northeastern University Natural Science, 2020, 41(4): 528-533. |
[5] | LI Zhen-jun, ZHAO Chun-yu, WEN Bang-chun, LU Ze-chen. Heat Source Rate Identification and Thermal Error Predictions of Ball Screw Feed Drive System for CNC Machine Tools [J]. Journal of Northeastern University Natural Science, 2019, 40(9): 1305-1309. |
[6] | LI Tie-jun, ZHAO Chun-yu, ZHANG Yi-min. Adaptive Analytical Model of Thermal Error Prediction for the Ball Screw Feed Drive Systems in CNC Machine Tools [J]. Journal of Northeastern University Natural Science, 2018, 39(6): 834-839. |
[7] | MA Yue, WANG Hong-fu, SUN Wei, HUANG Yu-bin. Multivariate Correlative and Combined Thermal Error Model for the CNC Machine Tool with Experimental Validation [J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 700-705. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||