Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (5): 103-112.DOI: 10.12068/j.issn.1005-3026.2025.20230306
• Resources & Civil Engineering • Previous Articles
Zheng-dong LIU1, Xiao-song LIN1(), Gang BAI2, Chen SUN1
Received:
2023-11-09
Online:
2025-05-15
Published:
2025-08-07
Contact:
Xiao-song LIN
CLC Number:
Zheng-dong LIU, Xiao-song LIN, Gang BAI, Chen SUN. Evolution of Permeability Rebound and Recovery Under the Influence of Gas Adsorption Thermal Effects[J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 103-112.
参数 | 值 | 参数 | 值 |
---|---|---|---|
煤层初始压力p0/MPa | 6.6 | 吸附时间τ/s | 844 345 |
杨氏模量E/MPa | 2 713 | CH4摩尔质量Mc/(kg·mol-1) | 0.016 |
基质杨氏模量Em/MPa | 8 139 | CH4动力黏度μ/Pa·s | 1.08×10-5 |
煤层压缩系数Cf/MPa-1 | 0.139 2 | CH4导热系数 | 0.031 |
煤层密度ρc/(kg·m-3) | 1 250 | 煤骨架导热系数 | 0.191 |
气体常数R/(J·mol-1·K-1) | 8.314 | CH4等量吸附热qst/(J·mol-1) | 2 100 |
极限吸附量nm/(m3·t-1) | 20 | Langmuir 压力常数b/MPa-1 | 1 |
煤骨架比热容cs/(J·kg-1·K-1) | 1 350 | Langmuir 应变常数εL | 0.126 6 |
泊松比v | 0.35 | CH4比热容cL/(J·kg-1·K-1) | 2 160 |
初始渗透率k0/cm2 | 4.935×10-12 | 内部膨胀系数f | 0.1 |
初始裂隙率ϕf | 0.005 | 初始孔隙率ϕm | 0.05 |
Table 1 Parameters required in the numerical simulation model
参数 | 值 | 参数 | 值 |
---|---|---|---|
煤层初始压力p0/MPa | 6.6 | 吸附时间τ/s | 844 345 |
杨氏模量E/MPa | 2 713 | CH4摩尔质量Mc/(kg·mol-1) | 0.016 |
基质杨氏模量Em/MPa | 8 139 | CH4动力黏度μ/Pa·s | 1.08×10-5 |
煤层压缩系数Cf/MPa-1 | 0.139 2 | CH4导热系数 | 0.031 |
煤层密度ρc/(kg·m-3) | 1 250 | 煤骨架导热系数 | 0.191 |
气体常数R/(J·mol-1·K-1) | 8.314 | CH4等量吸附热qst/(J·mol-1) | 2 100 |
极限吸附量nm/(m3·t-1) | 20 | Langmuir 压力常数b/MPa-1 | 1 |
煤骨架比热容cs/(J·kg-1·K-1) | 1 350 | Langmuir 应变常数εL | 0.126 6 |
泊松比v | 0.35 | CH4比热容cL/(J·kg-1·K-1) | 2 160 |
初始渗透率k0/cm2 | 4.935×10-12 | 内部膨胀系数f | 0.1 |
初始裂隙率ϕf | 0.005 | 初始孔隙率ϕm | 0.05 |
方案 | nm/(m3·t-1) | b/MPa-1 | qst/(J·mol-1) |
---|---|---|---|
1 | 20 | 1 | 2 100 |
40 | |||
60 | |||
2 | 20 | 1 | 2 100 |
2 | |||
3 | |||
3 | 20 | 1 | 2 100 |
2 600 | |||
3 100 |
Table 2 Simulation scheme under single factor condition
方案 | nm/(m3·t-1) | b/MPa-1 | qst/(J·mol-1) |
---|---|---|---|
1 | 20 | 1 | 2 100 |
40 | |||
60 | |||
2 | 20 | 1 | 2 100 |
2 | |||
3 | |||
3 | 20 | 1 | 2 100 |
2 600 | |||
3 100 |
方案 | nm/(m3·t-1) | b/MPa-1 | qst /(J·mol-1) |
---|---|---|---|
1 | 20 | 1 | 2 100 |
2 | 40 | 2 | 4 200 |
3 | 60 | 3 | 6 300 |
Table 3 Simulation scheme under multiple factor coupling condition
方案 | nm/(m3·t-1) | b/MPa-1 | qst /(J·mol-1) |
---|---|---|---|
1 | 20 | 1 | 2 100 |
2 | 40 | 2 | 4 200 |
3 | 60 | 3 | 6 300 |
[1] | Liang W G, Yan J W, Zhang B N, et al. Review on coal bed methane recovery theory and technology: recent progress and perspectives [J]. Energy & Fuels, 2021, 35(6): 4633-4643. |
[2] | Pillalamarry M, Harpalani S, Liu S M. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs [J]. International Journal of Coal Geology, 2011, 86(4): 342-348. |
[3] | 张惜图, 胡胜勇, 武玺, 等. 煤粉侵入对支撑裂缝渗透率的动态影响规律 [J]. 煤炭学报, 2024,49(5): 2338-2346. |
Zhang Xi-tu, Hu Sheng-yong, Wu Xi, et al. Dynamic influence of coal fine intrusion on propped fracture permeability [J]. Journal of China Coal Society, 2024,49(5): 2338-2346. | |
[4] | 王家臣. 我国综放开采40年及展望 [J]. 煤炭学报, 2023, 48(1): 83-99. |
Wang Jia-chen. 40 years and prospect of fully mechanized mining in China[J]. Journal of China Coal Society, 2023,48(1): 83-99. | |
[5] | Mastalerz M, Drobniak A. 5-coalbed methane: reserves, production, and future outlook [M]// Letcher T M. Future energy (3rd ed). New York: Elsevier, 2020: 97-109. |
[6] | Wang H, Wang E Y, Li Z H, et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model [J]. Process Safety and Environmental Protection, 2020, 136: 15-27. |
[7] | Palmer L, Mansooti J. How permeability depends on stress and pore pressure a new model [J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539-544. |
[8] | Chen Y X, Liu D M, Yao Y B, et al. Dynamic permeability change during coalbed methane production and its controlling factors [J]. Journal of Natural Gas Science and Engineering, 2015, 25: 335-346. |
[9] | Liu Z D, Cheng Y P, Wang L, et al. Analysis of coal permeability rebound and recovery during methane extraction: implications for carbon dioxide storage capability assessment [J]. Fuel, 2018, 230: 298-307. |
[10] | Su E L, Liang Y P, Zou Q L, et al. Numerical analysis of permeability rebound and recovery during coalbed methane extraction: implications for CO2 injection methods [J]. Process Safety and Environmental Protection, 2020, 149(4): 93-104. |
[11] | Wang J L, Lian W H, Li P, et al. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: reaction behavior and heat transfer [J]. Fuel, 2017, 207: 126-135. |
[12] | 郝建峰. 基于解吸热效应的煤与瓦斯热流固耦合模型及其应用研究 [D]. 阜新: 辽宁工程技术大学, 2021. |
Hao Jian-feng. Study on the thermo-hydro-mechanical couplingmodel of coal and gas based on the desorption thermal effect and its application [D]. Fuxin: Liaoning Technical University, 2021. | |
[13] | Teng T, Wang J G, Gao F, et al. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 319-333. |
[14] | 凡永鹏, 霍中刚, 王永. 基于流-固-热耦合的CO2-ECBM数值模拟研究 [J]. 煤矿安全, 2022, 53(2): 162-169. |
Fan Yong-peng, Huo Zhong-gang, Wang Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model [J]. Safety in Coal Mines, 2022, 53(2): 162-169. | |
[15] | Li S, Fan C J, Han J, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction [J]. Journal of Natural Gas Science and Engineering, 2016, 33: 324-336. |
[16] | Wang G, Wang K, Jiang Y J, et al. Reservoir permeability evolution during the process of CO2-enhanced coalbed methane recovery [J]. Energies, 2018, 11(11): 2996. |
[17] | Liu Z D, Cheng Y P, Liu Q Q, et al. Numerical assessment of CBM drainage in the remote unloaded coal body: insights of geostress-relief gas migration and coal permeability [J]. Journal of Natural Gas Science and Engineering, 2017, 45: 487-501. |
[18] | Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery [J]. Transport in Porous Media, 2004, 56(1): 1-16. |
[19] | Pan Z J, Connell L D. Modelling permeability for coal reservoirs: a review of analytical models and testing data [J]. International Journal of Coal Geology, 2012, 92: 1-44. |
[20] | Zhang H B, Liu J S, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226-1236. |
[21] | Zhao Y, Lin B Q, Liu T, et al. Gas flow in hydraulic slotting-disturbed coal seam considering stress relief induced damage [J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103160. |
[22] | Yang R, Ma T R, Xu H, et al. A model of fully coupled two-phase flow and coal deformation under dynamic diffusion for coalbed methane extraction [J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103010. |
[23] | 李海鉴. 煤吸附瓦斯的热效应研究 [D].徐州:中国矿业大学, 2019. |
Li Hai-jian. Study on thermal effect of methane adsorption in coal [D]. Xuzhou: China University of Mining and Technology, 2019. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||