As the number of electric vehicles (EVs) increases, reinforcement learning (RL) in EV charging scheduling faces challenges, particularly uncertainties and the curse of dimensionality from large‑scale applications. A microgrid model for residential areas, considering the vehicle‑to‑grid (V2G) mode and various nonlinear charging models is developed. The problem is formulated as a constrained Markov decision process (CMDP), with a model‑free RL framework to handle uncertainties. To address the curse of dimensionality, a strategy is designed where EVs are grouped by states, and agents send control signals to these sets, thus reducing the dimensionality of the action space. A Lagrangian deep deterministic policy gradient (LDDPG) algorithm is employed to solve the charging scheduling problem, with a safety filter ensuring constraint compliance. Numerical simulations validate the strategy’s effectiveness.