Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (1): 26-34.DOI: 10.12068/j.issn.1005-3026.2025.20239041
• Information & Control • Previous Articles Next Articles
Hai-yan LI1, Ren-chao QIAO1, Hai-jiang LI2, Quan CHEN3
Received:
2023-08-07
Online:
2025-01-15
Published:
2025-03-25
CLC Number:
Hai-yan LI, Ren-chao QIAO, Hai-jiang LI, Quan CHEN. CNN-Transformer Dehazing Algorithm Based on Global Residual Attention and Gated Feature Fusion[J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 26-34.
算法 | NH-Haze | Smoke-Haze | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
FFANet | 18.13 | 0.647 3 | 15.20 | 0.53 |
MSBDN | 17.97 | 0.659 1 | 15.19 | 0.53 |
AECR | 19.24 | 0.596 2 | 16.57 | 0.58 |
Dehamer | 20.23 | 0.684 4 | 18.83 | 0.62 |
2023_ITBdehaze | 20.31 | 0.626 0 | 19.01 | 0.63 |
本文算法 | 20.35 | 0.697 1 | 19.23 | 0.63 |
Table 1 Quantitative comparison of non‑uniform
算法 | NH-Haze | Smoke-Haze | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
FFANet | 18.13 | 0.647 3 | 15.20 | 0.53 |
MSBDN | 17.97 | 0.659 1 | 15.19 | 0.53 |
AECR | 19.24 | 0.596 2 | 16.57 | 0.58 |
Dehamer | 20.23 | 0.684 4 | 18.83 | 0.62 |
2023_ITBdehaze | 20.31 | 0.626 0 | 19.01 | 0.63 |
本文算法 | 20.35 | 0.697 1 | 19.23 | 0.63 |
算法 | O-Haze | Dense-Haze | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
FFANet | 22.12 | 0.77 | 12.22 | 0.44 |
MSBDN | 24.36 | 0.77 | 15.13 | 0.55 |
AECR | 22.90 | 0.72 | 15.35 | 0.52 |
Dehamer | 24.61 | 0.75 | 16.62 | 0.56 |
2023_1TBhehaze | 25.84 | 0.78 | 16.31 | 0.56 |
本文算法 | 25.92 | 0.82 | 16.72 | 0.61 |
Table 2 Quantitative comparison of uniform
算法 | O-Haze | Dense-Haze | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
FFANet | 22.12 | 0.77 | 12.22 | 0.44 |
MSBDN | 24.36 | 0.77 | 15.13 | 0.55 |
AECR | 22.90 | 0.72 | 15.35 | 0.52 |
Dehamer | 24.61 | 0.75 | 16.62 | 0.56 |
2023_1TBhehaze | 25.84 | 0.78 | 16.31 | 0.56 |
本文算法 | 25.92 | 0.82 | 16.72 | 0.61 |
去雾算法 | PSNR/dB | SSIM |
---|---|---|
MSBDN基础模型 | 17.97 | 0.659 1 |
去除全局残差注意力模块 | 18.84 | 0.667 3 |
去除PC-Swin Transformer增强模块 | 20.01 | 0.686 1 |
去除门控特征融合模块 | 19.85 | 0.679 5 |
本文算法 | 20.35 | 0.697 1 |
Table 3 Quantitative evaluation of ablation
去雾算法 | PSNR/dB | SSIM |
---|---|---|
MSBDN基础模型 | 17.97 | 0.659 1 |
去除全局残差注意力模块 | 18.84 | 0.667 3 |
去除PC-Swin Transformer增强模块 | 20.01 | 0.686 1 |
去除门控特征融合模块 | 19.85 | 0.679 5 |
本文算法 | 20.35 | 0.697 1 |
1 | Ren W Q, Liu S, Zhang H,et al.Single image dehazing via multi‑scale convolutional neural networks[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2016:154-169. |
2 | McCartney E J, Hall F F.Optics of the atmosphere:scattering by molecules and particles[J].IEEE Journal of Quantum Electronics,1977,30(5):76-77. |
3 | Narasimhan S G, Nayar S K.Chromatic framework for vision in bad weather[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000).Hilton Head Island,2000:598-605. |
4 | Narasimhan S G, Nayar S K.Vision and the atmosphere[J].International Journal of Computer Vision,2002,48:233-254. |
5 | Zhang H, Patel V M.Densely connected pyramid dehazing network[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,2018:3194-3203. |
6 | Creswell A, White T, Dumoulin V,et al.Generative adversarial networks:an overview[J].IEEE Signal Processing Magazine,2018,35(1):53-65. |
7 | Mei K F, Jiang A W, Li J C,et al.Progressive feature fusion network for realistic image dehazing[M]//Jawahar C V,Li H D,Mori G,et al.Lecture Notes in Computer Science.Cham:Springer International Publishing,2019:203-215. |
8 | Wu R X, Duan Z P, Guo C L,et al.RIDCP:revitalizing real image dehazing via high‑quality codebook priors[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Paris:IEEE,2023:22282-22291. |
9 | Qin X, Wang Z L, Bai Y C,et al.FFA‑net:feature fusion attention network for single image dehazing[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):11908-11915. |
10 | Das S D, Dutta S.Fast deep multi‑patch hierarchical network for nonhomogeneous image dehazing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle,2020:482-483. |
11 | Wang Z D, Cun X D, Bao J M,et al.Uformer:a general U-shaped transformer for image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans,2022:17683-17693. |
12 | Song Y D, He Z Q, Qian H,et al.Vision transformers for single image dehazing[J].IEEE Transactions on Image Processing,2023, 32:1927-1941. |
13 | Guo C L, Yan Q X, Anwar S,et al.Image dehazing transformer with transmission‑aware 3D position embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans,2022:5812-5820. |
14 | Wu H Y, Qu Y Y, Lin S H,et al.Contrastive learning for compact single image dehazing[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,2021:10551-10560. |
15 | Romano Y, Elad M.Boosting of image denoising algorithms[J].SIAM Journal on Imaging Sciences,2015,8(2):1187-1219. |
16 | Dong H, Pan J S, Xiang L,et al.Multi‑scale boosted dehazing network with dense feature fusion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Seattle,2020:2157-2167. |
17 | Zhao H S, Shi J P, Qi X J,et al.Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017).Honolulu,2017: 2881-2890. |
18 | Hu J, Shen L, Sun G.Squeeze‑and‑excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,2018:7132-7141. |
19 | Chen J N, Lu Y Y, Yu Q H,et al.TransUNet:transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2023-05-15].,12,01. |
20 | Ancuti C O, Ancuti C, Timofte R.NH-HAZE:an image dehazing benchmark with non‑homogeneous hazy and haze‑free images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle,2020:444-445. |
21 | Jin Y Y, Yan W D, Yang W H,et al.Structure representation network and uncertainty feedback learning for dense non‑uniform fog removal[C]//ACCV 2022:16th Asian Conference on Computer Vision.Macao,2022:155-172. |
22 | Ancuti C O, Ancuti C, Timofte R,et al.O-Haze:a dehazing benchmark with real hazy and haze‑free outdoor images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Salt Lake City,2018:754-762. |
23 | Ancuti C O, Ancuti C, Sbert M,et al.Dense-Haze:a benchmark for image dehazing with dense‑haze and haze‑free images[C]//2019 IEEE International Conference on Image Processing (ICIP).Taipei,2019:1014-1018. |
24 | Liu Y Y, Liu H, Li L Y,et al.A data‑centric solution to nonhomogeneous dehazing via vision transformer[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Vancouver,2023:1406-1415. |
[1] | YANG Dan, WANG Yu-jia, XIN Cai-ning, XU Bin. A Reconstruction Algorithm for Electromagnetic Vascular Tomography Image Based on Fractal-DenseNet [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 931-937. |
[2] | WANG Bao-yu, LIU Rui-lin, ZHANG Miao, ZHANG Shi. Delay Multiply and Sum Beamforming Algorithm Based on Virtual Source [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 469-475. |
[3] | LUAN Feng, YANG Fan, CAI Rui-zhi, YANG Chen. Low Sampling Rate CT Reconstruction Based on Dual Dictionary Adaptive Learning Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(12): 1709-1716. |
[4] | LIAN Jing, CHEN Shi, DING Kun, LI Lin-hui. Generative Adversarial Network Based on Multi-scale Dense Feature Fusion for Image Dehazing [J]. Journal of Northeastern University(Natural Science), 2022, 43(11): 1591-1598. |
[5] | BAO Xi-rong, LI Zheng-shuang, GAO Hao-sen, ZHANG Shi. Double Delay Multiplication and Accumulation Beamforming Algorithm Based on Weighting Factor [J]. Journal of Northeastern University(Natural Science), 2021, 42(7): 960-965. |
[6] | YANG Dan, LU Tian, GUO Wen-xin, WANG Xu. MIT Image Reconstruction Method Based on Simulated Annealing Particle Swarm Algorithm [J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 531-537. |
[7] | YANG Ai-ping, XING Jin-na, LIU Jin, LI Xiao-xiao. Single Image Dehazing Based on Middle Channel Compensation [J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 180-188. |
[8] | TENG Yue-yang, ZHENG Sun-yi, LU Zi-peng, KANG Yan. Two-Material Decomposition Algorithm of Dual-Energy CT Based on Gradient Descent Method [J]. Journal of Northeastern University Natural Science, 2017, 38(7): 936-940. |
[9] | WANG Xu, WANG Jing-wen, WANG Ke-yuan. Application of Thresholding Landweber Algorithm in MIT Image Reconstruction [J]. Journal of Northeastern University Natural Science, 2016, 37(4): 477-480. |
[10] | WANG Jing-wen, WANG Xu. Image Reconstruction Method Based on Compressed Sensing for Magnetic Induction Tomography [J]. Journal of Northeastern University Natural Science, 2015, 36(12): 1687-1690. |
[11] | WU Chunli, ZHU Xuehuan, ZHAI Jiangnan, DING Shan. Total Variation Regularized SENSE MRI Reconstruction Based on Fast Split Bregman Iteration [J]. Journal of Northeastern University Natural Science, 2014, 35(1): 24-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||