
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (9): 102-112.DOI: 10.12068/j.issn.1005-3026.2025.20240019
• Mechanical Engineering • Previous Articles Next Articles
Qi-zhen REN, Gui-ru MENG, Ya-dong GONG(
), Yuan-feng LI
Received:2024-01-22
Online:2025-09-15
Published:2025-12-03
Contact:
Ya-dong GONG
CLC Number:
Qi-zhen REN, Gui-ru MENG, Ya-dong GONG, Yuan-feng LI. Study on Interface Microstructure and Mechanical Performance of K403 Blade Repaired with Heterogeneous Material[J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 102-112.
| 元素 | Cr | Fe | Mo | Nb | Ti | Al | Co | W | Si | Ni |
|---|---|---|---|---|---|---|---|---|---|---|
| K403基体 | 10~12 | <2 | 3.8~4.5 | — | 2.3~2.9 | 5.3~5.9 | 4.5~6 | 4.8~5.5 | — | 余量 |
| IN718粉末 | 19.23 | 19.3 | 3.05 | 5.14 | 0.99 | 0.58 | <0.005 | — | 0.055 | 余量 |
Table 1 Chemical composition of K403 substrate and IN718 powder (mass fraction)
| 元素 | Cr | Fe | Mo | Nb | Ti | Al | Co | W | Si | Ni |
|---|---|---|---|---|---|---|---|---|---|---|
| K403基体 | 10~12 | <2 | 3.8~4.5 | — | 2.3~2.9 | 5.3~5.9 | 4.5~6 | 4.8~5.5 | — | 余量 |
| IN718粉末 | 19.23 | 19.3 | 3.05 | 5.14 | 0.99 | 0.58 | <0.005 | — | 0.055 | 余量 |
| 试验材料 | K403 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 温度/℃ | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 |
| 线膨胀系数×10-6/C | 11.3 | 12.3 | 12.3 | 12.6 | 12.9 | 13.0 | 13.4 | 13.8 | 14.3 | 15.1 |
| 热导率/(W·(m·C)-1) | 14.27 | 14.52 | 17.12 | 18.25 | 19.72 | 20.43 | 22.27 | 23.53 | 24.82 | — |
| 熔化温度/℃ | 1 260~1 338 | |||||||||
| 密度/(g·cm-3) | 8.1 | |||||||||
| 试验材料 | IN718 | |||||||||
| 温度/℃ | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 |
| 线膨胀系数×10-6/C | 11.8 | 13.0 | 13.5 | 14.1 | 14.4 | 14.8 | 15.4 | 17.0 | 18.4 | 18.7 |
| 热导率/(W·(m·C)-1) | 14.7 | 15.9 | 17.8 | 18.3 | 19.6 | 21.2 | 22.8 | 23.6 | 27.6 | 30.4 |
| 熔化温度/℃ | 1 260~1 320 | |||||||||
| 密度/(g·cm-3) | 8.24 | |||||||||
Table 2 Thermophysical parameters of K403 and IN718
| 试验材料 | K403 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 温度/℃ | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 |
| 线膨胀系数×10-6/C | 11.3 | 12.3 | 12.3 | 12.6 | 12.9 | 13.0 | 13.4 | 13.8 | 14.3 | 15.1 |
| 热导率/(W·(m·C)-1) | 14.27 | 14.52 | 17.12 | 18.25 | 19.72 | 20.43 | 22.27 | 23.53 | 24.82 | — |
| 熔化温度/℃ | 1 260~1 338 | |||||||||
| 密度/(g·cm-3) | 8.1 | |||||||||
| 试验材料 | IN718 | |||||||||
| 温度/℃ | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 |
| 线膨胀系数×10-6/C | 11.8 | 13.0 | 13.5 | 14.1 | 14.4 | 14.8 | 15.4 | 17.0 | 18.4 | 18.7 |
| 热导率/(W·(m·C)-1) | 14.7 | 15.9 | 17.8 | 18.3 | 19.6 | 21.2 | 22.8 | 23.6 | 27.6 | 30.4 |
| 熔化温度/℃ | 1 260~1 320 | |||||||||
| 密度/(g·cm-3) | 8.24 | |||||||||
| 序号 | P/W | v/(mm·min-1) | f/(r·min-1) | W/μm | H/μm | D/μm | W/H | η | HV |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 800 | 240 | 1.6 | 2 682.37 | 349.18 | 420.07 | 7.68 | 0.66 | 413.7 |
| 2 | 800 | 360 | 1.8 | 2 560.10 | 186.90 | 485.83 | 13.70 | 0.73 | 440.3 |
| 3 | 800 | 480 | 2 | 2 443.30 | 171.54 | 454.02 | 14.24 | 0.77 | 416.5 |
| 4 | 800 | 600 | 2.2 | 2 375.13 | 130.63 | 419.08 | 18.18 | 0.78 | 490.8 |
| 5 | 1 000 | 240 | 1.8 | 3 060.28 | 434.98 | 583.41 | 7.04 | 0.63 | 374 |
| 6 | 1 000 | 360 | 1.6 | 2 883.74 | 247.06 | 510.73 | 11.67 | 0.73 | 428.6 |
| 7 | 1 000 | 480 | 2.2 | 2 689.63 | 208.65 | 459.17 | 12.89 | 0.75 | 479.5 |
| 8 | 1 000 | 600 | 2 | 2 603.46 | 151.56 | 444.29 | 17.18 | 0.80 | 473.7 |
| 9 | 1 200 | 240 | 2 | 3 508.66 | 402.25 | 655.39 | 8.72 | 0.69 | 430.9 |
| 10 | 1 200 | 360 | 2.2 | 3 045.69 | 352.94 | 498.96 | 8.63 | 0.69 | 448.9 |
| 11 | 1 200 | 480 | 1.6 | 2 936.33 | 172.32 | 519.73 | 17.04 | 0.81 | 479.5 |
| 12 | 1 200 | 600 | 1.8 | 2 783.05 | 119.38 | 488.60 | 23.31 | 0.85 | 475.4 |
| 13 | 1 400 | 240 | 2.2 | 3 433.22 | 438.06 | 586.17 | 7.84 | 0.65 | 438.1 |
| 14 | 1 400 | 360 | 2 | 3 209.00 | 215.57 | 588.58 | 14.89 | 0.78 | 477.6 |
| 15 | 1 400 | 480 | 1.8 | 2 954.33 | 119.03 | 520.42 | 24.82 | 0.83 | 461.6 |
| 16 | 1 400 | 600 | 1.6 | 2 884.78 | 73.62 | 495.20 | 39.19 | 0.87 | 437.8 |
Table 3 Orthogonal test scheme and results of laser cladding IN718 alloy
| 序号 | P/W | v/(mm·min-1) | f/(r·min-1) | W/μm | H/μm | D/μm | W/H | η | HV |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 800 | 240 | 1.6 | 2 682.37 | 349.18 | 420.07 | 7.68 | 0.66 | 413.7 |
| 2 | 800 | 360 | 1.8 | 2 560.10 | 186.90 | 485.83 | 13.70 | 0.73 | 440.3 |
| 3 | 800 | 480 | 2 | 2 443.30 | 171.54 | 454.02 | 14.24 | 0.77 | 416.5 |
| 4 | 800 | 600 | 2.2 | 2 375.13 | 130.63 | 419.08 | 18.18 | 0.78 | 490.8 |
| 5 | 1 000 | 240 | 1.8 | 3 060.28 | 434.98 | 583.41 | 7.04 | 0.63 | 374 |
| 6 | 1 000 | 360 | 1.6 | 2 883.74 | 247.06 | 510.73 | 11.67 | 0.73 | 428.6 |
| 7 | 1 000 | 480 | 2.2 | 2 689.63 | 208.65 | 459.17 | 12.89 | 0.75 | 479.5 |
| 8 | 1 000 | 600 | 2 | 2 603.46 | 151.56 | 444.29 | 17.18 | 0.80 | 473.7 |
| 9 | 1 200 | 240 | 2 | 3 508.66 | 402.25 | 655.39 | 8.72 | 0.69 | 430.9 |
| 10 | 1 200 | 360 | 2.2 | 3 045.69 | 352.94 | 498.96 | 8.63 | 0.69 | 448.9 |
| 11 | 1 200 | 480 | 1.6 | 2 936.33 | 172.32 | 519.73 | 17.04 | 0.81 | 479.5 |
| 12 | 1 200 | 600 | 1.8 | 2 783.05 | 119.38 | 488.60 | 23.31 | 0.85 | 475.4 |
| 13 | 1 400 | 240 | 2.2 | 3 433.22 | 438.06 | 586.17 | 7.84 | 0.65 | 438.1 |
| 14 | 1 400 | 360 | 2 | 3 209.00 | 215.57 | 588.58 | 14.89 | 0.78 | 477.6 |
| 15 | 1 400 | 480 | 1.8 | 2 954.33 | 119.03 | 520.42 | 24.82 | 0.83 | 461.6 |
| 16 | 1 400 | 600 | 1.6 | 2 884.78 | 73.62 | 495.20 | 39.19 | 0.87 | 437.8 |
| 测试点 | Al | Ti | Cr | Fe | Co | Ni | Nb | Mo | W |
|---|---|---|---|---|---|---|---|---|---|
| A | 1.25 | 3.70 | 14.32 | 10.29 | — | 40.89 | 23.90 | 5.65 | — |
| B | 1.70 | 2.34 | 17.64 | 12.41 | — | 60.96 | 2.64 | 2.31 | — |
| C | 0.46 | 0.82 | 16.90 | 15.13 | — | 54.86 | 8.83 | 3.00 | — |
| D | 0.20 | 0.96 | 14.01 | 12.40 | — | 56.78 | 12.61 | 3.05 | — |
| E | 0.40 | 0.69 | 19.92 | 17.99 | — | 54.69 | 3.60 | 2.70 | — |
| F | 0.01 | 40.21 | 1.97 | — | 0.08 | 2.69 | — | 16.55 | 38.48 |
| G | 5.30 | 2.45 | 10.11 | — | 4.70 | 69.02 | — | 3.08 | 5.34 |
Table 4 EDS chemical composition of each point in cladding layer and substrate after heat
| 测试点 | Al | Ti | Cr | Fe | Co | Ni | Nb | Mo | W |
|---|---|---|---|---|---|---|---|---|---|
| A | 1.25 | 3.70 | 14.32 | 10.29 | — | 40.89 | 23.90 | 5.65 | — |
| B | 1.70 | 2.34 | 17.64 | 12.41 | — | 60.96 | 2.64 | 2.31 | — |
| C | 0.46 | 0.82 | 16.90 | 15.13 | — | 54.86 | 8.83 | 3.00 | — |
| D | 0.20 | 0.96 | 14.01 | 12.40 | — | 56.78 | 12.61 | 3.05 | — |
| E | 0.40 | 0.69 | 19.92 | 17.99 | — | 54.69 | 3.60 | 2.70 | — |
| F | 0.01 | 40.21 | 1.97 | — | 0.08 | 2.69 | — | 16.55 | 38.48 |
| G | 5.30 | 2.45 | 10.11 | — | 4.70 | 69.02 | — | 3.08 | 5.34 |
| 样品 | 屈服强度 | 抗拉强度 | 断后伸长率 |
|---|---|---|---|
| 未热处理 | 404.9 | 668.8 | 15.4 |
| 热处理 | 706.5 | 731.7 | 3.7 |
| K403基体 | — | 773.8 | 3.4 |
Table 5 Tensile properties of specimens at room
| 样品 | 屈服强度 | 抗拉强度 | 断后伸长率 |
|---|---|---|---|
| 未热处理 | 404.9 | 668.8 | 15.4 |
| 热处理 | 706.5 | 731.7 | 3.7 |
| K403基体 | — | 773.8 | 3.4 |
| [1] | Talu Ü S, Gahn L, Kittel J, et al. Process development for tip repair of complex shaped turbine blades with IN718[J]. Procedia Manufacturing, 2020, 47: 1050-1057. |
| [2] | Zhuo Y M, Chen Y H, Yang C L. Research status and prospect of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8):22-28. |
| [3] | Song H Y, Lei J B, Xie J C, et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 2019, 805: 551-564. |
| [4] | 李鹏涛, 左洪福, 肖文, 等. 航空发动机叶片损伤及其修复技术研究与展望[J]. 航空学报, 2024, 45(15): 029635. |
| Li Peng-tao, Zuo Hong-fu, Xiao Wen, et al. Research and prospect of aero engine blade damage and its repair technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 029635. | |
| [5] | 鲁耀钟, 雷卫宁, 任维彬, 等. 激光熔覆Inconel718合金裂纹分析及裂纹控制研究[J]. 表面技术, 2020, 49(9): 233-243. |
| Lu Yao-zhong, Lei Wei-ning, Ren Wei-bin, et al. Crack analysis and control of laser cladding Inconel718 alloy[J]. Surface Technology, 2020, 49(9): 233-243. | |
| [6] | Xu L, Cao H J, Liu H L, et al. Study on laser cladding remanufacturing process with FeCrNiCu alloy powder for thin-wall impeller blade[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 1383-1392. |
| [7] | Sun D, Cai Y C, Zhu L S, et al. High-temperature oxidation and wear properties of TiC-reinforced CrMnFeCoNi high entropy alloy composite coatings produced by laser cladding[J]. Surface and Coatings Technology, 2022, 438: 128407. |
| [8] | Liu J C, Wang C, Tong L J, et al. Study on the effect mechanism of aluminizing on fatigue performance of K403 nickel-based superalloy[J]. Journal of Alloys and Compounds, 2020, 835: 155277. |
| [9] | Han L, Zheng S W, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating[J]. International Journal of Fatigue, 2021, 153: 106500. |
| [10] | Gao Z N, Wang L L, Wang Y N, et al. Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding[J]. Journal of Alloys and Compounds, 2022, 903: 163905. |
| [11] | Dmitrieva A, Klimova-Korsmik O, Gushchina M, et al. Effect of the laser cladding parameters on the crack formation and microstructure during nickel superalloy gas turbine engines repair[J]. Metals, 2023, 13(2): 393. |
| [12] | 周中波, 杨明波, 张建中, 等. K403合金高压导向叶片的组织及热疲劳机理分析[J]. 铸造技术, 2023, 44(3): 246-251. |
| Zhou Zhong-bo, Yang Ming-bo, Zhang Jian-zhong, et al. Microstructure and thermal fatigue mechanism of K403 alloy high pressure guide-vane[J]. Foundry Technology, 2023, 44(3): 246-251. | |
| [13] | Sui S, Chen J, Ma L, et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments[J]. Journal of Alloys and Compounds, 2019, 770: 125-135. |
| [1] | Shang-wu YANG, Hai-xia QU, Heng-jun LI, Chang-sheng LIU. Properties of (Ti,W)C Particles Reinforced Ni-based Coating by Laser Cladding [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 953-959. |
| [2] | Hang SUN, Wei CHEN, Chang LUO, Chang-sheng LIU. Microstructure and Properties of Tempered High Vanadium Semi High Speed Steel Alloy Cladding Layer [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 636-642. |
| [3] | Wen-bo YAO, Chen LIU, Shuo SHANG, Chang-sheng LIU. Microstructure and Properties of Laser Cladding Fe‐Al Alloy at Different Scanning Speeds [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 170-178. |
| [4] | XI Wen-chao, SONG Bo-xue, LIANG Ying-dong, YU Tian-biao. Research on Thermodynamics and Wear Resistance of In-situ NbC Reinforced YCF102 Cladding Layer [J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 538-543. |
| [5] | XIN Bo, CHENG Guang, YAO Jun, GONG Ya-dong. Powder Mixing Mechanism of Laser Cladding Forming for Adaptive FGM [J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1123-1128. |
| [6] | SONG Bo-xue, YU Tian-biao, JIANG Xing-yu, XI Wen-chao. Analysis of Molten Pool Temperatures and Convection Caused by Laser Cladding [J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1427-1431. |
| [7] | YU Tian-biao, SONG Bo-xue, XI Wen-chao, MA Zhe-lun. Influence of Laser Cladding Process Parameters on Morphology of Cladding Layer and Its Optimization [J]. Journal of Northeastern University Natural Science, 2019, 40(4): 537-542. |
| [8] | XU Ni-jun, LIU Chang-sheng, FENG Xin-yu, SUN Ting. Effects of Laser Cladding Parameters on Microstructure and Properties of Gradient Cladded Coating on 45# Steel [J]. Journal of Northeastern University Natural Science, 2019, 40(4): 495-499. |
| [9] | SUN You-zheng, LIU Shuai, LI Jin-bao, LIU Chang-sheng. Effect of Ni Content on Microstructure and Hardness of Laser Cladding Layers [J]. Journal of Northeastern University Natural Science, 2016, 37(11): 1551-1554. |
| [10] | LIANG Jing, CHEN Sui-yuan, LIU Chang-sheng, CHEN Wei. Microstructure of Laser Cladding Multi-layer Nb-Si-Ti [J]. Journal of Northeastern University Natural Science, 2014, 35(12): 1710-1714. |
| [11] | MAO Feixiong, LIU Tao, YU Jingkun. ZrO2+MgS Auxiliary Electrode Coating Prepared by Laser Cladding [J]. Journal of Northeastern University Natural Science, 2014, 35(1): 67-69. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||