Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (7): 84-93.DOI: 10.12068/j.issn.1005-3026.2025.20250053
• Intelligent Manufacturing • Previous Articles Next Articles
Ya-dong GONG(), Jia-hao GAO, Li-ya JIN, Heng ZHAO
Received:
2025-05-08
Online:
2025-07-15
Published:
2025-09-24
Contact:
Ya-dong GONG
CLC Number:
Ya-dong GONG, Jia-hao GAO, Li-ya JIN, Heng ZHAO. Progress and Application of Intelligent Manufacturing Technology[J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 84-93.
[1] | 周济,李培根.智能制造导论[M].北京:高等教育出版社, 2021: 1-56. |
Zhou Ji, Li Pei-gen. Introduction to intelligent manufacturing[M]. Beijing: Higher Education Press, 2021: 1-56. | |
[2] | 李培根,高亮.智能制造概论[M].北京:清华大学出版社, 2021: 1-68. |
Li Pei-gen, Gao Liang. Introduction to intelligent manufacturing[M]. Beijing: Tsinghua University Press, 2021: 1-68. | |
[3] | 周济. 智能制造——“中国制造2025” 的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284. |
Zhou Ji. Intelligent manufacturing: main direction of “made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284. | |
[4] | 臧冀原, 刘宇飞, 王柏村, 等. 面向2035的智能制造技术预见和路线图研究[J]. 机械工程学报, 2022, 58(4): 285-308. |
Zang Ji-yuan, Liu Yu-fei, Wang Bai-cun, et al. Technology forecasting and roadmapping of intelligent manufacturing by 2035[J]. Journal of Mechanical Engineering, 2022, 58(4): 285-308. | |
[5] | Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4): 624-636. |
[6] | He B, Bai K J. Digital twin-based sustainable intelligent manufacturing: a review[J]. Advances in Manufacturing, 2021, 9(1): 1-21. |
[7] | 杨晓楠, 房浩楠, 李建国, 等. 智能制造中的人-信息-物理系统协同的人因工程[J]. 中国机械工程, 2023, 34(14): 1710-1722, 1740. |
Yang Xiao-nan, Fang Hao-nan, Li Jian-guo, et al. Human factor engineering for human-cyber-physical system collaboration in intelligent manufacturing[J]. China Mechanical Engineering, 2023, 34(14): 1710-1722, 1740. | |
[8] | Zhou G H, Zhang C, Li Z, et al. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing[J]. International Journal of Production Research, 2020, 58(4): 1034-1051. |
[9] | 汪俊亮, 高鹏捷, 张洁, 等. 制造大数据分析综述: 内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
Wang Jun-liang, Gao Peng-jie, Zhang Jie, et al. A review of manufacturing big data: connotation, methodology, application and trends[J]. Journal of Mechanical Engineering, 2023, 59(12): 1-16. | |
[10] | Ryalat M, ElMoaqet H, AlFaouri M. Design of a smart factory based on cyber-physical systems and Internet of Things towards industry 4.0[J]. Applied Sciences, 2023, 13(4): 2156. |
[11] | Maddikunta P K R, Pham Q V, Prabadevi B, et al. Industry 5.0: a survey on enabling technologies and potential applications[J]. Journal of Industrial Information Integration, 2022, 26: 100257. |
[12] | Li C Q, Chen Y Q, Shang Y L. A review of industrial big data for decision making in intelligent manufacturing[J]. Engineering Science and Technology, an International Journal, 2022, 29: 101021. |
[13] | 高亮, 李培根, 黄培, 等. 数字化设计类工业软件发展策略研究[J]. 中国工程科学, 2023, 25(2): 254-262. |
Gao Liang, Li Pei-gen, Huang Pei, et al. Development strategies of industrial software for digital design[J]. Strategic Study of CAE, 2023, 25(2): 254-262. | |
[14] | 庄存波,刘检华,张雷.工业5.0的内涵、体系架构和使能技术[J].机械工程学报, 2022, 58(18): 75-87. |
Zhuang Cun-bo, Liu Jian-hua, Zhang Lei. Industry 5.0 connotation, architecture and enabling technologies[J]. Journal of Mechanical Engineering, 2022, 58(18): 75-87. | |
[15] | 陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统, 2019, 25(1): 1-18. |
Tao Fei, Liu Wei-ran, Zhang Meng, et al. Digital twin five-dimensional model and ten domain applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. | |
[16] | 刘强. 智能制造理论体系架构研究[J]. 中国机械工程, 2020, 31(1): 24-36. |
Liu Qiang. Study on architecture of intelligent manufacturing theory[J]. China Mechanical Engineering, 2020, 31(1): 24-36. | |
[17] | Zhu D H, Feng X Z, Xu X H, et al. Robotic grinding of complex components: a step towards efficient and intelligent machining-challenges, solutions, and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101908. |
[18] | 张健民, 单旭沂. 热轧产线智能制造技术应用研究—— 宝钢1580热轧示范产线[J]. 中国机械工程, 2020, 31(2): 246-251. |
Zhang Jian-min, Shan Xu-yi. Application of intelligent manufacturing technology in hot rolling production line: Baosteel 1580 hot rolling demonstration production line[J]. China Mechanical Engineering, 2020, 31(2): 246-251. | |
[19] | Zhou D D, Xu K, Lyu Z M, et al. Intelligent manufacturing technology in the steel industry of China: a review[J]. Sensors, 2022, 22(21): 8194. |
[1] | Zhong-zheng LI, Zhao-xia WU, Jin-yang WANG, Zeng-xin KANG. FeO Content Prediction Model in Sinter Based on GA-BiLSTM with Feature Optimization [J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 56-65. |
[2] | HUANG Chuan, HU Ping, LIAN Jing. A Big Data Method to Rebuild 3D Road Map Based on Vehicle Data [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 771-777. |
[3] | HONG Jun, WEN Tao, YE Zheng-wang, KANG Jun. Integrity Assurance of Outsourced Spatial Database [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 327-333. |
[4] | MA An-xiang, ZHANG Chang-sheng, ZHANG Bin, ZHANG Xiao-hong. Load Prediction Approach for Cloud Application Based on Deep Belief Networks [J]. Journal of Northeastern University Natural Science, 2017, 38(2): 209-213. |
[5] | LYU Yan-xia, WANG Cui-rong, WANG Cong, YU Chang-yong. Online Classification Algorithm for Uncertain Data Stream in Big Data [J]. Journal of Northeastern University Natural Science, 2016, 37(9): 1245-1249. |
[6] | HAN Chang-ik, WANG En-de, XIA Jian-ming, LI Gwang-su. Ore Grade Estimation Based on Multi-gene Genetic Programming [J]. Journal of Northeastern University Natural Science, 2016, 37(3): 408-412. |
[7] | ZHAO Hai, DOU Sheng-chang, LI Da-zhou, CHEN Xing-chi. Mathematical Modeling of Pulse Wave Based on Lognormal Function [J]. Journal of Northeastern University Natural Science, 2016, 37(2): 169-173. |
[8] | WU Si-wei, CAO Guang-ming, ZHOU Xiao-guang, LIU Zhen-yu. Data Preprocessing and Neural Network Model of C-Mn Steel Based on Big Data [J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1710-1715. |
[9] | HAN Dong-hong, WANG Kun, SHAO Chong-lei, MA Chang. A Cluster Algorithm for Uncertain Data Stream [J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1677-1682. |
[10] | ZHANG Bin, ZHU Meng-xiao, ZHAO Xiu-tao, ZHANG Chang-sheng. Cost Oriented Virtualized Resource Optimization Allocation for SBS [J]. Journal of Northeastern University Natural Science, 2015, 36(7): 929-933. |
[11] | YAN Yong-ming, ZHANG Bin, GUO Jun, MO Yu-yan. Virtual Machine Hotspot Degree Comprehensive Evaluation Method Based on Fuzzy Analytic Hierarchy Process [J]. Journal of Northeastern University Natural Science, 2015, 36(2): 182-187. |
[12] | SHEN Zhi-dong, LIN Chen, TONG Qiang. A Method for Lightweight Verification on Data Integrity in Mobile Cloud Computing Environment [J]. Journal of Northeastern University Natural Science, 2015, 36(11): 1562-1566. |
[13] | SHENG Gang, WEN Tao, GUO Quan, YIN Ying. Secure Scalar Product Computation of Vectors in Cloud Computing [J]. Journal of Northeastern University, 2013, 34(6): 786-791. |
[14] | WANG Xueyi, WANG Xingwei, HUANG Min. Cloud Resource Allocation Method and Bidding Strategy Based on Simultaneous Upward Bidding Auction [J]. Journal of Northeastern University, 2013, 34(4): 482-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||