Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (7): 11-21.DOI: 10.12068/j.issn.1005-3026.2025.20250063
• Industrial Intelligent Theory and Methods • Previous Articles Next Articles
Qiu-ye SUN1,2(), Rong-da XING1, Qian-xiang SHEN1, Zhen-ao SUN1
Received:
2025-06-12
Online:
2025-07-15
Published:
2025-09-24
Contact:
Qiu-ye SUN
CLC Number:
Qiu-ye SUN, Rong-da XING, Qian-xiang SHEN, Zhen-ao SUN. Review of Multi-type Energy Routers Research[J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 11-21.
类别 | 主要研究方向 | 特点或主要功能 | 发展方向 |
---|---|---|---|
电能路由器 | 端口间的电力分配 | 多端口电力变换及电能路由功能 | 高效率电能转换、高质量供电 |
信息能量路由器 | 能量节点间的协调调度 | 信息采集、处理等功能 | 运行状态调控与优化、设备间协同 |
多能能量路由器 | 多能源系统建模 | 无实体装备,由能源网络抽象而成;多能转换功能 | 多能源的梯级利用、多能流优化 |
Table 1 Classification of ER
类别 | 主要研究方向 | 特点或主要功能 | 发展方向 |
---|---|---|---|
电能路由器 | 端口间的电力分配 | 多端口电力变换及电能路由功能 | 高效率电能转换、高质量供电 |
信息能量路由器 | 能量节点间的协调调度 | 信息采集、处理等功能 | 运行状态调控与优化、设备间协同 |
多能能量路由器 | 多能源系统建模 | 无实体装备,由能源网络抽象而成;多能转换功能 | 多能源的梯级利用、多能流优化 |
层面 | 特点 | 研究内容 | 现有问题 |
---|---|---|---|
第一层面电力变换 | 多端口电力变换 | 拓扑结构、内部单元能量平衡[ | 本层面研究较成熟,但尚未有ER的容量定义 |
第二层面能量路由控制 | 端口间的能量路由 | 网络电压控制[ | 缺少ER与网络中其他设备交互的研究 |
第三层面信息处理与优化控制 | 信息能量耦合 | 信息处理、通信、网络潮流优化[ | 信息与能量流的结合仍不紧密 |
第四层面多能协调 | 多能综合利用 | 经济运行、碳排放、能源效率等优化 | 未有对实体设备的研究 |
Table 2 Research aspects of ER
层面 | 特点 | 研究内容 | 现有问题 |
---|---|---|---|
第一层面电力变换 | 多端口电力变换 | 拓扑结构、内部单元能量平衡[ | 本层面研究较成熟,但尚未有ER的容量定义 |
第二层面能量路由控制 | 端口间的能量路由 | 网络电压控制[ | 缺少ER与网络中其他设备交互的研究 |
第三层面信息处理与优化控制 | 信息能量耦合 | 信息处理、通信、网络潮流优化[ | 信息与能量流的结合仍不紧密 |
第四层面多能协调 | 多能综合利用 | 经济运行、碳排放、能源效率等优化 | 未有对实体设备的研究 |
控制方法 | 基本特性 | 适用场景 | 主要优缺点 | 实现目标 | 与其他方法的比较 |
---|---|---|---|---|---|
恒定参数 控制 | 输出参数保持 设定值 | 组网或并网 | 易实现,但缺乏适应性 | 电压、频率或功率支撑 | 与下垂控制相比,缺乏动态调节能力 |
下垂控制 | 有功功率按容量 比例分担 | 分布式 构网 | 易实现,但无功难以按 比例分配 | 功率分配 | 相比恒定参数控制,增加了动态调节 |
虚拟同步机 控制 | 模拟同步发电机 特性 | 新能源 并网 | 提供虚拟惯性,但控制 复杂 | 模拟惯性 | 相比传统控制,更能适应可再生能源波动 |
智能控制 | 应用先进算法和 计算技术 | 高级应用 | 灵活且性能高,但实现 难度大 | 系统优化 | 相比传统控制,具有更高级的智能化水平 |
Table 3 Power conversion control of ER
控制方法 | 基本特性 | 适用场景 | 主要优缺点 | 实现目标 | 与其他方法的比较 |
---|---|---|---|---|---|
恒定参数 控制 | 输出参数保持 设定值 | 组网或并网 | 易实现,但缺乏适应性 | 电压、频率或功率支撑 | 与下垂控制相比,缺乏动态调节能力 |
下垂控制 | 有功功率按容量 比例分担 | 分布式 构网 | 易实现,但无功难以按 比例分配 | 功率分配 | 相比恒定参数控制,增加了动态调节 |
虚拟同步机 控制 | 模拟同步发电机 特性 | 新能源 并网 | 提供虚拟惯性,但控制 复杂 | 模拟惯性 | 相比传统控制,更能适应可再生能源波动 |
智能控制 | 应用先进算法和 计算技术 | 高级应用 | 灵活且性能高,但实现 难度大 | 系统优化 | 相比传统控制,具有更高级的智能化水平 |
[1] | 清华大学能源互联网创新研究院. 2024 国家能源互联网发展年度报告 [R/OL].(2024-06-20)[2025-05-10]. . |
Energy Internet Research Institute, Tsinghua University. 2024 annual report on the development of China’s national energy Internet[R/OL]. (2024-06-20)[2025-05-10]. | |
[2] | Heydt G T. Future renewable electrical energy delivery and management systems: energy reliability assessment of FREEDM systems[C]//IEEE PES General Meeting. Minneapolis, 2010: 1-4. |
[3] | Data Library Research. Global intelligent energy router market opportunities and forecast 2023—2029 [R/OL]. (2023-03-22)[2025-05-10]. . |
[4] | 腾讯网. 鼎信通讯能量路由器成功安装于华晨宝马铁西工厂,超级充电系统进入新阶段 [EB/OL].(2024-04-24)[2025-06-10].. |
Tencent.com. Dingxin communication’s energy router has been successfully installed at Brilliance BMW's Tiexi Factory, marking a new phase for the supercharging system[EB/OL]. (2024-04-24)[2025-06-10]. | |
[5] | 宗升,何湘宁,吴建德,等. 基于电力电子变换的电能路由器研究现状与发展[J]. 中国电机工程学报, 2015, 35(18): 4559-4570. |
Zong Sheng, He Xiang-ning, Wu Jian-de, et al. Overview of power electronics based electrical energy router[J]. Proceedings of the CSEE, 2015, 35(18): 4559-4570. | |
[6] | 葛乾诚, 姚钢, 周荔丹 .电能路由器相关技术研究现状与展望[J]. 电力建设, 2019, 40(6): 105-113. |
Ge Qian-cheng, Yao Gang, Zhou Li-dan. Research status and prospects of electric energy router technology[J]. Electric Power Construction, 2019, 40(6): 105-113. | |
[7] | 赵争鸣, 冯高辉, 袁立强, 等. 电能路由器的发展及其关键技术[J]. 中国电机工程学报, 2017, 37(13): 3823-3834. |
Zhao Zheng-ming, Feng Gao-hui, Yuan Li-qiang, et al. The development and key technologies of electric energy router[J]. Proceedings of the CSEE, 2017, 37(13): 3823-3834. | |
[8] | 盛万兴, 段青, 梁英, 等. 面向能源互联网的灵活配电系统关键装备与组网形态研究[J]. 中国电机工程学报, 2015, 35(15): 3760-3769. |
Sheng Wan-xing, Duan Qing, Liang Ying, et al. Research of power distribution and application grid structure and equipment for future energy Internet[J]. Proceedings of the CSEE, 2015, 35(15): 3760-3769. | |
[9] | Ding T, Jia W H, Shahidehpour M, et al. Review of optimization methods for energy hub planning, operation, trading, and control[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1802-1818. |
[10] | Wang C, Zheng X M, Liu Z, et al. Based on virtual generator energy router AC-DC coordination control[C]//IECON 2018:44th Annual Conference of the IEEE Industrial Electronics Society. Washington D C, 2018: 122-125. |
[11] | Feng Y S, Li Y, Cao Y J, et al. Automatic voltage control based on adaptive zone-division for active distribution system[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Xi’an, 2016: 278-282. |
[12] | Guo X, Zheng J H. Optimization configuration method for microgrid based on electric energy router[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing, 2017: 1-6. |
[13] | 国家市场监督管理总局, 国家标准化管理委员会. 能源路由器功能规范和技术要求: [S]. 北京: 中国标准出版社, 2021. |
National Market Supervision Administration, Standardization Administration of the People’s Republic of China. Functional specifications and technical requirements of energy router: [S]. Beijing: Standards Press of China, 2021. | |
[14] | 李振, 盛万兴, 段青, 等. 基于储能稳压的交直流混合电能路由器协调控制策略[J]. 电力系统自动化, 2019, 43(2): 121-129. |
Li Zhen, Sheng Wan-xing, Duan Qing, et al. Coordinated control strategy of AC/DC hybrid power router based on voltage stabilization by energy storage[J]. Automation of Electric Power Systems, 2019, 43(2): 121-129. | |
[15] | 刘迎澍, 马川. 基于交直流混合微网构架的电能路由器[J]. 现代电力, 2015, 32(1): 13-18. |
Liu Ying-shu, Ma Chuan. The power router based on hybrid AC/DC microgrid framework[J]. Modern Electric Power, 2015, 32(1): 13-18. | |
[16] | 段青, 盛万兴, 李振, 等. 电能路由器接入电力电子化配电网稳定性初步分析[J]. 电网技术, 2019, 43(1): 227-235. |
Duan Qing, Sheng Wan-xing, Li Zhen, et al. Stability analysis of power routers connected to power electronic distribution grid[J]. Power System Technology, 2019, 43(1): 227-235. | |
[17] | 王弦, 刘建华, 向加佳, 等. 基于电力电子变压器的电能路由器研究[J]. 自动化与仪器仪表, 2016(11): 4-8. |
Wang Xian, Liu Jian-hua, Xiang Jia-jia, et al. Study on the power router based on power electric transformer[J]. Automation & Instrumentation, 2016(11): 4-8. | |
[18] | 陶海波, 杨晓峰, 李泽杰, 等. 电能路由器中基于MMC的超级电容储能系统及其改进SOC均衡控制策略[J]. 电网技术, 2019, 43(11): 3970-3978. |
Tao Hai-bo, Yang Xiao-feng, Li Ze-jie, et al. A modified SOC equalization control strategy of MMC based super capacitor energy storage system in electrical energy router application[J]. Power System Technology, 2019, 43(11): 3970-3978. | |
[19] | 肖迁, 何晋伟, 王浩, 等. 电网故障下的电能路由器直流电容电压平衡控制策略[J]. 电力系统自动化, 2018, 42(2): 20-25, 142. |
Xiao Qian, He Jin-wei, Wang Hao, et al. Voltage balancing control strategy for DC capacitor of electrical energy router under power grid failure[J]. Automation of Electric Power Systems, 2018, 42(2): 20-25, 142. | |
[20] | 魏树生, 赵争鸣, 文武松, 等. 共交流母线多端口变换器高频振荡特性分析[J]. 清华大学学报(自然科学版), 2020, 60(9): 751-762. |
Wei Shu-sheng, Zhao Zheng-ming, Wen Wu-song, et al. Analysis of the high-frequency oscillation characteristics of a multi-port converter with an AC link[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(9): 751-762. | |
[21] | 蒋超. 单相电能路由器设计及其能量管理研究[D]. 北京: 华北电力大学(北京), 2020. |
Jiang Chao. Research on design and energy management of single-phase power router[D]. Beijing: North China Electric Power University(Beijing), 2020. | |
[22] | Chen Y N, Wang P, Elasser Y, et al. Multicell reconfigurable multi-input multi-output energy router architecture[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13210-13224. |
[23] | Qin H J, Liu C, Shi Y, et al. Prediction-based MIMO control of a multiport magnetic-coupled energy router[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 6409-6420. |
[24] | Lyu Y Q, Deng F J, Shen Z, et al. Quad-port magnetic integrated coupled inductor based magnetic network energy routers with high power density[J]. IEEE Transactions on Power Electronics, 2025, 40(8): 11655-11672. |
[25] | Liu X Z, Zheng Z D, Wang K, et al. An energy router based on multi-winding high-frequency transformer[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, 2016: 3317-3321. |
[26] | Du S X, Wang Z, Liu J J. A medium-voltage four-port energy router based on modular magnetic-coupled converters (MMCC) with reduced switching losses[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15895-15903. |
[27] | 韩学楠, 苏小林, 阎晓霞, 等. 基于双直流母线架构的电能路由器[J]. 电力建设, 2018, 39(3): 83-91. |
Han Xue-nan, Su Xiao-lin, Yan Xiao-xia, et al. Electric power router based on double DC bus structure[J]. Electric Power Construction, 2018, 39(3): 83-91. | |
[28] | 冯高辉, 赵争鸣, 袁立强. 面向能源互联网的电能路由器应用研究[J]. 广东电力, 2020, 33(12): 22-30. |
Feng Gao-hui, Zhao Zheng-ming, Yuan Li-qiang. Research on application of electric energy router for energy Internet[J]. Guangdong Electric Power, 2020, 33(12): 22-30. | |
[29] | 孙凌玉. 基于下垂控制的交流微电网组网技术研究[D]. 杭州: 浙江大学, 2022. |
Sun Ling-yu. Research on networking technology of AC microgrid based on droop control[D]. Hangzhou: Zhejiang University, 2022. | |
[30] | Zhong Q C. Robust droop controller for accurate proportional load sharing among inverters operated in parallel[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1281-1290. |
[31] | 金胜赫,张化光,孙秋野,等.基于一致性的微电网分布式不对称功率分配控制[J]. 东北大学学报(自然科学版),2016,37 (10): 1374-1378. |
Kim Sung-hyok, Zhang Hua-guang, Sun Qiu-ye, et al. Consensus-based distributed asymmetric power sharing control in microgrids [J].Journal of Northeastern University(Natural Science),2016,37(10):1374-1378. | |
[32] | van Wesenbeeck M P N, de Haan S W H, Varela P, et al. Grid tied converter with virtual kinetic storage[C]//2009 IEEE Bucharest PowerTech. Bucharest, 2009: 1-7. |
[33] | Roasto I, Husev O, Najafzadeh M, et al. Voltage source operation of the energy-router based on model predictive control[J]. Energies, 2019, 12(10): 1892. |
[34] | Zhou B K, Yang X F, Nong R B, et al. Multi-objective optimization control for input-series output-parallel dual-active-bridge DC-DC converter in EER application[C]//2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). Nanjing, 2020: 2408-2413. |
[35] | Zhao X J, Liu Y R, Chai X H, et al. Multimode operation mechanism analysis and power flow flexible control of a new type of electric energy router for low-voltage distribution network[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3594-3606. |
[36] | Li Y Y, Sun Q Y, Wang D L, et al. A virtual inertia-based power feedforward control strategy for an energy router in a direct current microgrid application[J]. Energies, 2019, 12(3): 517. |
[37] | Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids: a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 158-172. |
[38] | Yin X, Wu J, Li F, et al. Topology and coordinated operation control strategy of vehicle-mounted multienergy energy router[J]. IEEE Transactions on Transportation Electrification, 2025, 11(2): 6788-6798. |
[39] | Lian J R, Dai C H, Zhou F L, et al. A hierarchical control strategy based on dual-vector model predictive current control for railway energy router[J]. Electronics, 2023, 12(18): 3919. |
[40] | Lai J H, Chen M W, Dai X F, et al. Power flow optimization and control strategy for energy router in dual mode traction power supply system[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12284-12293. |
[41] | Zhao G P, Li Z, Zha P F, et al. Energy management scheme of single-phase electric energy router with two-layer intelligent control combined with optimal scheduling of battery[J]. IET Renewable Power Generation, 2022, 16(11): 2357-2371. |
[42] | Chen R C, Yang Y X, Jin T. A hierarchical coordinated control strategy based on multi-port energy router of urban rail transit[J]. Protection and Control of Modern Power Systems, 2022, 7(15): 1-12. |
[43] | 黄博南, 周建国, 孙秋野, 等. 能源互联网不平衡及谐波补偿控制策略[J]. 东北大学学报(自然科学版), 2017, 38(6): 761-765, 788. |
Huang Bo-nan, Zhou Jian-guo, Sun Qiu-ye, et al. Control strategy for the compensation of imbalance and harmonic in energy Internet[J]. Journal of Northeastern University (Natural Science), 2017, 38(6): 761-765, 788. | |
[44] | Han J, Li X, Jiang Y, et al. Three-phase UPQC topology based on quadruple-active-bridge[J]. IEEE Access, 2020, 9: 4049-4058. |
[45] | Roncero-Clemente C, Vilhena N, Delgado-Gomes V, et al. Control and operation of a three-phase local energy router for prosumers in a smart community[J]. IET Renewable Power Generation, 2020, 14(4): 560-570. |
[46] | Cui X Y, Liu Y L, Yuan D, et al. A hierarchical coordinated control strategy for power quality improvement in energy router integrated active distribution networks[J]. Sustainability, 2023, 15(3): 2655. |
[47] | Lan Z, Wang J Z, Zeng J H, et al. Constant frequency control strategy of microgrids by coordinating energy router and energy storage system[J]. Mathematical Problems in Engineering, 2020, 2020(1): 4976529. |
[48] | Pham M C, Razi R, Hably A, et al. Power management in multi-microgrid system based on energy routers[C]//2020 IEEE International Conference on Industrial Technology (ICIT). Buenos Aires, 2020: 1178-1183. |
[49] | Ren Q C, Chen A L, Shen Y Q, et al. Harmonics suppression and stability improvement for power router in nonideal grid conditions: a multiport passivity-based collaborative control scheme[J]. IEEE Transactions on Power Electronics, 2024, 39(10): 12652-12666. |
[50] | Weng X, Zhao Z M, Chen K N, et al. Chirp signal injection method and real-time impedance characteristic measurement of electric energy router[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(5): 5564-5577. |
[51] | Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information[J]. Energy and Buildings, 2008, 40(3): 394-398. |
[52] | Hambridge S, Huang A Q, Yu R Y. Solid state transformer (SST) as an energy router: economic dispatch based energy routing strategy[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Montreal, 2015: 2355-2360. |
[53] | Bruno S, Dellino G, La Scala M, et al. A microforecasting module for energy management in residential and tertiary buildings[J]. Energies, 2019, 12(6): 1006. |
[54] | Mostafavi S, Cox R W. An unsupervised approach in learning load patterns for non-intrusive load monitoring[C]//2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC). Calabria, 2017: 631-636. |
[55] | Saitoh H, Miyamori S, Shimada T, et al. An autonomous decentralized control mechanism for power flow in an open electric energy network[J]. Electrical Engineering in Japan, 1997, 121(4): 28-37. |
[56] | Takuno T, Koyama M, Hikihara T. In-home power distribution systems by circuit switching and power packet dispatching[C]//2010 First IEEE International Conference on Smart Grid Communications. Gaithersburg, 2010: 427-430. |
[57] | He X N, Wang R C, Wu J D, et al. Nature of power electronics and integration of power conversion with communication for talkative power[J]. Nature Communications, 2020, 11(1): 2479. |
[58] | Wang R C, Chen G P, Chen J H, et al. An embedded communication method for in-home energy routers with power/signal dual modulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(5): 5553-5563. |
[59] | Heemels W P M H, Donkers M C F, Teel A R. Periodic event-triggered control for linear systems[J]. IEEE Transactions on Automatic Control, 2013, 58(4): 847-861. |
[60] | Suhail Hussain S M, Aftab M A, Nadeem F, et al. Optimal energy routing in microgrids with IEC 61850 based energy routers[J]. IEEE Transactions on Industrial Electronics, 2019, 67(6): 5161-5169. |
[61] | Shi X Y, Xu Y L, Sun H B. A biased min-consensus-based approach for optimal power transaction in multi-energy-router systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 217-228. |
[62] | Wang R C, Wu J D, Qian Z N, et al. A graph theory based energy routing algorithm in energy local area network[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3275-3285. |
[63] | Ji X T, Liu D, Xiao F, et al. A novel graph theory based two-stage minimum cost routing mechanism in energy Internet[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108346. |
[64] | 缪尚孝, 任一峰, 康睿, 等. 基于能量路由器的微网群优化调度研究[J]. 现代电子技术, 2025, 48(10): 97-102. |
Miao Shang-xiao, Ren Yi-feng, Kang Rui, et al. Microgrid cluster optimal scheduling based on ER[J]. Modern Electronics Technique, 2025, 48(10): 97-102. | |
[65] | Hebal S, Mechta D, Harous S, et al. Hybrid energy routing approach for energy Internet[J]. Energies, 2021, 14(9): 2579. |
[66] | Liu Y S, Li J, Wu Y, et al. Coordinated control of the energy router-based smart home energy management system[J]. Applied Sciences, 2017, 7(9): 943. |
[67] | 叶泓炜. 基于能源互联网的分布式电能路由控制策略研究[D]. 重庆: 重庆大学, 2017. |
Ye Hong-wei. Research on distributed power routing control strategy based on energy Internet[D]. Chongqing: Chongqing University, 2017. | |
[68] | Yu H Y, Wang Y B, Zhang H W, et al. Impedance modeling and stability analysis of triple-active-bridge-converter-based renewable-electricity-hydrogen-integrated metro DC traction power system[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12340-12353. |
[69] | Ni C, Chen L J, Chen X T, et al. Energy analysis and particle swarm optimization of clean energy router based on a solar-thermal-assisted advanced adiabatic compressed air energy storage system[J]. IET Renewable Power Generation, 2023, 17(9): 2302-2314. |
[70] | Qiu S S, Chen J F, Mao C X, et al. Day-ahead optimal scheduling of power-gas-heating integrated energy system considering energy routing[J]. Energy Reports, 2022, 8: 1113-1122. |
[71] | Hua H C, Qin Y C, Geng J Y, et al. Robust mixed H2/H∞ controller design for energy routers in energy Internet[J]. Energies, 2019, 12(3): 340. |
[72] | Zhou N, Xie D, Gu C H, et al. Coordinated planning of multi-area multi-energy systems by a novel routing algorithm based on random scenarios[J]. International Journal of Electrical Power & Energy Systems, 2021, 131: 107028. |
[73] | 徐航, 董树锋, 何仲潇, 等. 考虑能量梯级利用的工厂综合能源系统多能协同优化[J]. 电力系统自动化, 2018, 42(14): 123-130. |
Xu Hang, Dong Shu-feng, He Zhong-xiao, et al. Multi-energy cooperative optimization of integrated energy system in plant considering stepped utilization of energy[J]. Automation of Electric Power Systems, 2018, 42(14): 123-130. | |
[74] | 黄俊. 综合能源系统多目标优化运行算法研究[D]. 广州: 华南理工大学, 2019. |
Huang Jun. Research on multi-objective optimal operation algorithm of comprehensive energy system[D]. Guangzhou: South China University of Technology, 2019. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||