An Applied Research of Sparsity SVDD Method to the Fault Detection
WANG Guo-zhu1, LIU Jian-chang1, LI Yuan2
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819,China; 2. Information Engineering School, Shenyang University of Chemical Technology, Shenyang 110142,China.
WANG Guo-zhu, LIU Jian-chang, LI Yuan. An Applied Research of Sparsity SVDD Method to the Fault Detection[J]. Journal of Northeastern University Natural Science, 2015, 36(6): 761-765.
[1]谢磊,刘雪芹,张建明,等.基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报,2009,35(1):107-112.(Xie Lei,Liu Xue-qin,Zhang Jian-ming,et al.Non-Gaussian process monitoring based on NGPP-SVDD[J].Acta Automatica Sinica,2009,35(1):107-112.) [2]Vapnik V N.统计学习理论[M].北京:电子工业出版社,2004.(Vapnik V N.Statistical learning theory[M].Beijing:Electronic Industry Press,2004.) [3]Tax D,Duin R. Support vector data description[J].Machine Learning,2004,54(1):45-66. [4]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. [5]Tax D.One-class classification[M].Delft:Delft University of Technology,2001:21-55. [6]Ge Z Q,Gao F,Song Z H.Batch process monitoring based on support vector data description method[J].Journal of Process Control,2011,21:949-959. [7]Saitoh S.Theory of reproducing kernels and its applications[M].Harlow:Longman Scientific & Technical,1998. [8]Asa B H,David H,Siegelmann H T,et al.Support vector clustering[J].Journal of Machine Learning Research,2001,2:125-137. [9]Wang X M,Chung F L,Wang S T.Theoretical analysis for solution of support vector data description[J]. Neural Networks,2011,24:360-369.