GONG Xiao-li, ZHUANG Xin-tian, ZHANG Wei-ping. Analysis of the Jump Dynamics of Stock Market Based on the Mixed GARCH Model[J]. Journal of Northeastern University Natural Science, 2016, 37(5): 746-750.
[1]黄苒,唐齐鸣.基于可变强度跳跃-GARCH模型的资产价格跳跃行为分析——以中国上市公司股票市场数据为例[J].中国管理科学,2014,22(6):1-9.(Huang Ran,Tang Qi-ming.Analyzing the jump dynamics of asset price in jump-GARCH model with variable intensity[J].Chinese Journal of Management Science, 2014,22(6):1-9.) [2]Kim Y,Rachev S,Bianchi M,et al.Time series analysis for financial market meltdowns[J].Journal of Banking & Finance,2011,35(8):1879-1891. [3]Smith D R.Asymmetry in stochastic volatility models:threshold or correlation[J].Studies in Nonlinear Dynamics & Econometrics,2009,13(3):1-34. [4]Daal E,Naka A,Yu J.Volatility clustering,leverage effects,and jump dynamics in the US and emerging Asian equity markets[J].Journal of Banking and Finance,2007,31(9):2751-2769. [5]吴鑫育,周海林,汪寿阳.双杠杆门限随机波动率模型及其实证研究[J].管理科学学报,2014,17(7):63-81.(Wu Xin-yu,Zhou Hai-lin,Wang Shou-yang.A threshold stochastic volatility model with double leverage and its empirical test[J].Journal of Management Sciences in China,2014,17(7):63-81.) [6]Yang Z X,Yin G.Stability of nonlinear regime-switching jump diffusion[J].Nonlinear Analysis,2012,75(9):3854-3873. [7]Douc R,Moulines E,Stoffer D.Nonlinear time series theory,methods,and applications with R example[M].London:Chapman & Hall/CRC,2014:91-123. [8]Klebaner F C.Introduction to stochastic calculus with applications[M].London:Imperial College Press,2005:123-147. [9]Charles C,Fuh C D.A tale of two regimes:theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications[J].Journal of Banking and Finance,2013,37(8):3204-3217. [10]Huang S H,Guo M H.Model risk of the implied GARCH-normal model[J].Quantitative Finance,2014, 14(12):2215-2224.