Network Traffic Short-Term Prediction Based on Echo State Network Optimized by Improved Black Hole Algorithm
HAN Ying1,2, JING Yuan-wei1, JIN Jian-yu3, LI Kun2
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. College of Engineering, Bohai University, Jinzhou 121013, China; 3. School of National Defense Education, Northeastern University, Shenyang 110819, China.
HAN Ying, JING Yuan-wei, JIN Jian-yu, LI Kun. Network Traffic Short-Term Prediction Based on Echo State Network Optimized by Improved Black Hole Algorithm[J]. Journal of Northeastern University Natural Science, 2018, 39(3): 311-315.
[1]田中大,李树江,王艳红,等.基于混沌理论与改进回声状态网络的网络流量多步预测[J].通信学报, 2016,37(3):55-70.(Tian Zhong-da,Li Shu-jiang,Wang Yan-hong,et al.Network traffic multi-step prediction based on chaos theory and improved echo state network[J].Journal on Communications,2016,37(3):55-70.) [2]Chisci L,Mavino A,Perferi G,et al.Real-time epileptic seizure prediction using AR models and support vector machines[J].IEEE Transactions on Biomedical Engineering,2010,57(5):1124-1132. [3]Laner M,Svoboda P,Rupp M.Parsimonious fitting of long-range dependent network traffic using ARMA models[J].IEEE Communications Letters,2013,17(12):2368-2371. [4]Narendra B C,Eswara R B.A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J].Applied Soft Computing,2014,23(1):27-38. [5]孟庆芳,陈珊珊,陈月辉,等.基于递归量化分析与支持向量机的癫痫脑电自动检测方法[J].物理学报,2014,63(5):1-7.(Meng Qing-fang,Chen Shan-shan,Chen Yue-hui,et al.Automatic detection of epileptic EEG based on recurrence quantification analysis and SVM[J].Acta Physica Sinica,2014,63(5):1-7.) [6]李琨,韩莹,黄海礁.基于IBH-LSSVM的混沌时间序列预测及其在抽油井动液面短期预测中的应用[J].信息与控制,2016,45(2):241-247.(Li Kun,Han Ying,Huang Hai-jiao.Chaotic time series prediction based on IBH-LSSVM and its application to short-term prediction of dynamic fluid level of the oil wells[J].Information and Control,2016,45(2):241-247.) [7]Du W,Leung S Y S,Kwong C K.Time series forecasting by neural networks:a knee point-based multi-objective evolutionary algorithm approach[J].Expert Systems with Applications,2014,41(7): 8049-8061. [8]Wang Z X,Pei L L.An optimized grey dynamic model for forecasting the output of high-tech industry in China[J].Mathematical Problems in Engineering,2014, 2014(1):1-7. [9]Jaeger H,Haas H.Harnessing nonlinearity:predicting chaotic systems and saving energy in wireless communication[J].Science,2004,304(5667):78-80. [10]田中大,李树江,王艳红,等.基于KPCA优化ESN的网络流量预测方法[J].电机与控制学报,2015, 19(12):114-120.(Tian Zhong-da,Li Shu-jiang,Wang Yan-hong,et al.Network traffic prediction method based on KPCA optimized ESN[J]. Electric Machines and Control,2015,19(12):114-120.) [11]Hatamlou A.Black hole:a new heuristic optimization approach for data clustering[J].Information Science, 2013,222(1):75-184. [12]Li K,Gao X W,Zhou H B,et al.Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH-SC method[J].Petroleum Science, 2015,12(1):135-147. [13]王通,高宪文,蒋子健.基于黑洞算法的LSSVM的参数优化[J].东北大学学报(自然科学版),2014,35(2):170-174.(Wang Tong,Gao Xian-wen,Jiang Zi-jian.Parameters optimizing of LSSVM based on black hole algorithm[J].Journal of Northeastern University( Natural Science),2014,35(2):170-174.) [14]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay times,and embedding windows[J].Physica D:Nonlinear Phenomena,1999,127(1):48-60.