LIN Qing-yang, CHEN Xiao-fang, XIE Yong-fang. An Superheat Identification Method in Aluminium Electrolysis Based on Residual Convolutional Self-Attention Neural Network[J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 8-17.
[1]桂卫华,岳伟超,谢永芳,等.铝电解生产智能优化制造研究综述[J].自动化学报,2018,44(11):1957-1970.(Gui Wei-hua,Yue Wei-chao,Xie Yong-fang,et al.A review of intelligent optimal manufacturing for aluminum reduction production[J].Acta Automatica Sinica,2018,44(11):1957-1970.) [2]Li J,Liu Y X,Huang Y Z,et al.Bath temperature model for point-feeding aluminium reduction cells[J].Transactions of Nonferrous Metals Society of China,1994,4(1):26-32. [3]Drengstig T,Ljungquist D,Foss B A.On the AlF3 and temperature control of an aluminum electrolysis cell[J].IEEE Transactions on Control Systems Technology,1998,6(2):157-171. [4]郭英杰,胡峰,于洪,等.基于时间粒的铝电解过热度预测模型[J].南京大学学报(自然科学),2019,55(4):624-632.(Guo Ying-jie,Hu Feng,Yu Hong,et al.Prediction model of superheat in aluminum electrolysis based on time granularity[J].Journal of Nanjing University(Natural Science),2019,55(4):624-632.) [5]Lei Y X,Karimi H R,Cen L H,et al.Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application[J].Control Engineering Practice,2021,108:104706. [6]Min M C,Chen X F,Xie Y F.Constrained voting extreme learning machine and its application[J].Journal of Systems Engineering and Electronics,2021,32(1):209-219. [7]Bostrom A,Bagnall A.Binary shapelet transform for multiclass time series classification[C]//International Conference on Big Data Analytics and Knowledge Discovery.Berlin:Springer,2015:257-269. [8]Wan W X,Chen X F,Gui W H,et al.A novel shapelet transformation method for classification of multivariate time series with dynamic discriminative subsequence and application in anode current signals[J].Journal of Central South University,2020,27(1):114-131. [9]Kate R J.Using dynamic time warping distances as features for improved time series classification[J].Data Mining and Knowledge Discovery,2016,30(2):283-312. [10]Lines J,Bagnall A.Time series classification with ensembles of elastic distance measures[J].Data Mining and Knowledge Discovery,2015,29(3):565-592. [11]Baydogan M G,Runger G,Tuv E.A bag-of-features framework to classify time series[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2796-2802. [12]Deng H,Runger G,Tuv E,et al.A time series forest for classification and feature extraction[J].Information Sciences,2013,239:142-153. [13]Bagnall A,Lines J,Hills J,et al.Time-series classification with COTE:the collective of transformation-based ensembles[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(9):2522-2535. [14]Goodfellow I,Bengio Y,Courville A.Deep learning[M].Cambridge:MIT Press,2016. [15]Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [16]Tan M,Le Q.EfficientNet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.New York:PMLR,2019:6105-6114. [17]Liu A T,Yang S,Chi P H,et al.Mockingjay:unsupervised speech representation learning with deep bidirectional transformer encoders[C]//ICASSP 2020—2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Barcelona:IEEE,2020:6419-6423. [18]宋欣,李奇,解婉君,等.YOLOv3-ADS:一种基于YOLOv3的深度学习目标检测压缩模型[J].东北大学学报(自然科学版),2021,42(5):609-615.(Song Xin,Li Qi,Xie Wan-jun,et al.YOLOv3-ADS:a compression model for deep learning object detection based on YOLOv3[J].Journal of Northeastern University(Natural Science),2021,42(5):609-615.) [19]Dempster A,Petitjean F,Webb G I.ROCKET:exceptionally fast and accurate time series classification using random convolutional kernels[J].Data Mining and Knowledge Discovery,2020,34(5):1454-1495. [20]Qiao M,Yan S,Tang X,et al.Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads[J].IEEE Access,2020,8:66257-66269. [21]Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.New York:Curran Associates,2017:5998-6008. [22]Lai S,Liu K,He S,et al.How to generate a good word embedding[J].IEEE Intelligent Systems,2016,31(6):5-14. [23]Xiong R,Yang Y,He D,et al.On layer normalization in the transformer architecture[C]//International Conference on Machine Learning.New York:PMLR,2020:10524-10533. [24]Touvron H,Cord M,Douze M,et al.Training data-efficient image transformers & distillation through attention[C]//International Conference on Machine Learning.New York:PMLR,2021:10347-10357. [25]Odena A,Dumoulin V,Olah C.Deconvolution and checkerboard artifacts[J].Distill,2016,1(10):e3. [26]Noh H,Hong S,Han B.Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE Computer Society,2015:1520-1528. [27]Bagnall A,Dau H A,Lines J,et al.The UEA multivariate time series classification archive,2018[J].arXiv preprint arXiv:1811.00075,2018. [28]Karim F,Majumdar S,Darabi H,et al.Multivariate LSTM-FCNs for time series classification[J].Neural Networks,2019,116:237-245. [29]Yan J, Mu L,Wang L,et al.Temporal convolutional networks for the advance prediction of ENSO[J].Scientific Reports,2020,10(1):1-15. [30]曹德芳,刘柏池.SVM财务欺诈识别模型[J].东北大学学报(自然科学版),2019,40(2):295-299,304.(Cao De-fang,Liu Bai-chi.SVM model for financial fraud detection[J].Journal of Northeastern University(Natural Science),2019,40(2):295-299,304.)[31]Chen T,Guestrin C.Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:Assoc Computing Machinery,2016:785-794.