A Multi-factor Correlation Analysis Method for Typhoon Moving Track Based on NMI and HSIC0
QIAO Bai-you1, HAO Yuan-qing1, TANG Zhong1, WANG Rui2
1. School of Computer Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China.
QIAO Bai-you, HAO Yuan-qing, TANG Zhong, WANG Rui. A Multi-factor Correlation Analysis Method for Typhoon Moving Track Based on NMI and HSIC0[J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1234-1244.
[1]Zhang L,Zhu H,Liu J.Characteristics of tropical cyclones formed in the Eastern Pacific Northwest[J].Natural Hazards,2021,106(3):2619-2633. [2]Huang X Y,Jin L.An artificial intelligence prediction model based on principal component analysis for typhoon tracks[J].Chinese Journal of Atmospheric Sciences,2013,37(5):1154-1164. [3]Vazirani V V.Approximation algorithms[M].Berlin:Springer-Verlag,2001. [4]Mayer-Schonberger V,Cukier K.Big data:a revolution that will transform how we live,work,and think[M].New York:Eamon Dolan/Houghton Mifflin Harcourt,2013. [5]黄奕武,高拴柱,钱奇峰.T639台风预报误差与环境场变量的相关分析和回归分析[J].气象,2016,42(12):1506-1512.(Huang Yi-wu,Gao Shuan-zhu,Qian Qi-feng.Correlation and regression analysis of typhoon forecast errors and ambient variables by T639[J].Meteorological Monthly,2016,42(12):1506-1512.) [6]Reshef D N,Reshef Y A,Finucane H K,et al.Detecting novel associations in large data sets[J].Science,2011,334(6062):1518-1524. [7]Székely G J,Rizzo M L,Bakirov N K.Measuring and testing dependence by correlation of distances[J].The Annals of Statistics,2007,35(6):2769-2794. [8]Gretton A,Bousquet O,Smola A,et al.Measuring statistical dependence with Hilbert-Schmidt norms[C]// Proceedings of the 16th International Conference on Algorithmic Learning Theory.Singapore:Sanjay Jain,2005:63-77. [9]Chen X,Duan Y,Houthooft R,et al.InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[C]//The 30th Annual Conference on Neural Information Processing Systems.Barcelona,2016:2172-2180. [10]胡兵兵,唐华,吴幼龙.基于互信息约束的生成对抗网络分类模型[J].中国科学院大学学报,2022,39(4):551-560.(Hu Bing-bing,Tang Hua,Wu You-long.Classification models based on generative adversarial networks with mutual information regularization[J].Journal of University of Chinese Academy of Sciences,2022,39(4):551-560.) [11]Vinh L T,Lee S,Park Y T,et al.A novel feature selection method based on normalized mutual information[J].Applied Intelligence,2012,37(1):100-120. [12]王黎明,吴香华,赵天良,等.基于距离相关系数和支持向量机回归的PM2.5浓度滚动统计预报方案[J].环境科学学报,2017,37(4):1268-1276.(Wang Li-ming,Wu Xiang-hua,Zhao Tian-liang,et al.A scheme for rolling statistical forecasting of PM2.5 concentrations based on distance correlation coefficient and support vector regression[J].Acta Scientiae Circumstantiae,2017,37(4):1268-1276.) [13]Wen C,Yang Y,Xiao Q,et al.Genome-wide association studies of brain imaging data via weighted distance correlation[J].Bioinformatics,2020,36(19):4942-4950. [14]梁吉业,冯晨娇,宋鹏.大数据相关分析综述[J].计算机学报,2016,39(1):1-18.(Liang Ji-ye,Feng Chen-jiao,Song Peng.A survey on correlation analysis of big data[J].Chinese Journal of Computers,2016,39(1):1-18.) [15]宋成宝,柳平增,刘兴华,等.基于HSIC的日光温室温度传感器优化配置策略[J].农业工程学报,2022,38(8):200-208.(Song Cheng-bao,Liu Ping-zeng,Liu Xing-hua,et al.Optimal configuration strategy for temperature sensors in solar greenhouse based on HSIC[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(8):200-208.) [16]李柏松,任伟杰,韩敏.基于HSIC-GL的多元时间序列非线性Granger因果关系分析[J].信息与控制,2021,50(3):356-365.(Li Bai-song,Ren Wei-jie,Han Min.Nonlinear Granger causality analysis for multivariate time series using HSIC-GL model[J].Information and Control,2021,50(3):356-365.) [17]张晓琴,刘玲,郭鑫垚.基于HSIC0的类间非线性相关系数度量[J].计算机工程与应用,2019,55(3):46-49.(Zhang Xiao-qin,Liu Ling,Guo Xin-yao.Measurement of nonlinear correlation coefficient among classes based on HSIC0[J].Computer Engineering and Applications,2019,55(3):46-49.) [18]Pearson K.Contributions to the mathematical theory of evolution(III):regression,heredity,and panmixia[J].Proceedings of the Royal Society of London,1895,59(1):69-71. [19]Chen T Q,Guestrin C.XGBoost:a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,2016:785-794. [20]Song L,Smola A J,Gretton A,et al.Feature selection via dependence maximization[J].Journal of Machine Learning Research,2012,13:1393-1434. [21]Ying M,W Zhang,H Yu,et al.An overview of the China Meteorological Administration tropical cyclone database[J].Journal of Atmospheric and Oceanic Technology,2014,31(2):287-301. [22]Lu X,Yu H,Ying M.et al.Western north pacific tropical cyclone database created by the China Meteorological Administration[J].Advances in Atmospheric Sciences,2021,38(4):690-699. [23]Kalnay E,Kanamitsu M,Kistler R,et al.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society,1996,77(3):437-470. [24]National Oceanic and Atmospheric Administration,National Center for Atmospheric Research.NCEP reanalysis datasets (1948-2018).A big earth data platform for three poles[EB/OL].[2022-03-20].https://doi.org/10.11888/Meteoro.tpdc.270922.