Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (10): 1369-1378.DOI: 10.12068/j.issn.1005-3026.2024.10.001
• Information & Control •
Zeng-xin KANG, Jin-chao CHEN, Jin-yang WANG, Zhao-xia WU()
Received:
2023-05-24
Online:
2024-10-31
Published:
2024-12-31
Contact:
Zhao-xia WU
About author:
WU Zhao-xia,E-mail: ysuwzx@126.comCLC Number:
Zeng-xin KANG, Jin-chao CHEN, Jin-yang WANG, Zhao-xia WU. Interval Prediction Model of RF-ET-KDE Sintering Process Physical Index Based on Stacking Integration[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1369-1378.
参数类型 | 参数序号 | 参数 | 参数序号 | 参数 |
---|---|---|---|---|
单位时间原料下料量 | 1 2 3 | 钙石灰粉/(t·h-1) 除尘矿/(t·h-1) 燃料/(t·h-1) | 4 5 6 | 钒钛铁精粉/(t·h-1) 自返矿/(t·h-1) 高炉返矿/(t·h-1) |
烧结混合料质量百分数 | 7 8 | 全铁/% 五氧化二钒/% | 9 10 | 氧化钙/% 二氧化硅/% |
烧结机操作 | 11 12 13 14 15 16 | 圆辊速度/(r·h-1) 机速九辊/(r·h-1) 烧结机机速/(m·min-1) 点火温度/oC 煤气流量/(m3·h-1) 风机风量/(m3·h-1) | 17 18 19 20 21 22 | 一号风门开度/% 二号风门开度/% 机速板式转速/(r·h-1) 环冷机机速/(m·min-1) 助燃风流量/(m3·h-1) 助燃风压力/kPa |
烧结机状态 | 23 24 25 | 南烟道温度/oC 南烟道负压/kPa 北烟道温度/oC | 26 27~40 41~54 | 北烟道负压/kPa 风箱废弃温度/oC 风箱负压/kPa |
输出 | 55 | 水分的质量分数/% | 56 | 粒度/% |
Table 1 Parameters of sintering process
参数类型 | 参数序号 | 参数 | 参数序号 | 参数 |
---|---|---|---|---|
单位时间原料下料量 | 1 2 3 | 钙石灰粉/(t·h-1) 除尘矿/(t·h-1) 燃料/(t·h-1) | 4 5 6 | 钒钛铁精粉/(t·h-1) 自返矿/(t·h-1) 高炉返矿/(t·h-1) |
烧结混合料质量百分数 | 7 8 | 全铁/% 五氧化二钒/% | 9 10 | 氧化钙/% 二氧化硅/% |
烧结机操作 | 11 12 13 14 15 16 | 圆辊速度/(r·h-1) 机速九辊/(r·h-1) 烧结机机速/(m·min-1) 点火温度/oC 煤气流量/(m3·h-1) 风机风量/(m3·h-1) | 17 18 19 20 21 22 | 一号风门开度/% 二号风门开度/% 机速板式转速/(r·h-1) 环冷机机速/(m·min-1) 助燃风流量/(m3·h-1) 助燃风压力/kPa |
烧结机状态 | 23 24 25 | 南烟道温度/oC 南烟道负压/kPa 北烟道温度/oC | 26 27~40 41~54 | 北烟道负压/kPa 风箱废弃温度/oC 风箱负压/kPa |
输出 | 55 | 水分的质量分数/% | 56 | 粒度/% |
数据类型 | 单位时间原料下料量/(t·h-1) | 输出质量百分数/% | ||||||
---|---|---|---|---|---|---|---|---|
钙石灰粉 | 除尘矿 | 燃料 | 焦粉 | 铁粉 | 钒粉 | 粒度 | 水分 | |
均值 | 30.184 | 9.768 | 13.693 | 5.621 | 14.792 | 72.938 | 24.532 | 8.295 |
最小值 | 11.913 | 0 | 0 | 0 | 0 | 0 | 20.500 | 7.500 |
最大值 | 48.753 | 24.248 | 40.821 | 20.935 | 67.366 | 305.117 | 26.400 | 9.100 |
Table 2 Original data of sintering
数据类型 | 单位时间原料下料量/(t·h-1) | 输出质量百分数/% | ||||||
---|---|---|---|---|---|---|---|---|
钙石灰粉 | 除尘矿 | 燃料 | 焦粉 | 铁粉 | 钒粉 | 粒度 | 水分 | |
均值 | 30.184 | 9.768 | 13.693 | 5.621 | 14.792 | 72.938 | 24.532 | 8.295 |
最小值 | 11.913 | 0 | 0 | 0 | 0 | 0 | 20.500 | 7.500 |
最大值 | 48.753 | 24.248 | 40.821 | 20.935 | 67.366 | 305.117 | 26.400 | 9.100 |
水分 | 粒度 | ||||||
---|---|---|---|---|---|---|---|
工艺参数 | MIC | 工艺参数 | MIC | 工艺参数 | MIC | 工艺参数 | MIC |
风机风量 | 0.215 2 | 1号风箱真空度 | 0.101 1 | 风机风量 | 0.115 9 | 圆辊速度 | 0.062 6 |
11号风箱真空度 | 0.177 4 | 5号风箱真空度 | 0.099 9 | 钒钛铁精粉 | 0.105 4 | 20号风箱废气温度 | 0.061 9 |
钒钛铁精粉 | 0.158 8 | 高炉返矿 | 0.095 1 | 2号风门开度 | 0.102 8 | 5号风箱真空度 | 0.059 8 |
7号风箱真空度 | 0.132 0 | 1号风门开度 | 0.094 9 | 自返矿 | 0.084 1 | 21号风箱废气温度 | 0.059 1 |
钙石灰粉 | 0.126 3 | 1号风箱废气温度 | 0.093 2 | 1号风门开度 | 0.083 0 | 3号风箱废气温度 | 0.058 6 |
2号风门开度 | 0.116 5 | 烧结用白煤 | 0.091 6 | 7号风箱废气温度 | 0.071 6 | 除尘矿 | 0.058 1 |
20号风箱废气温度 | 0.113 6 | 9号风箱真空度 | 0.087 4 | 烧结用白煤 | 0.069 4 | 22号风箱废气温度 | 0.056 4 |
自返矿 | 0.106 0 | 9号风箱废气温度 | 0.086 9 | 钙石灰粉 | 0.065 1 | 1号风箱废气温度 | 0.055 7 |
7号风箱废气温度 | 0.104 9 | 11号风箱废气温度 | 0.085 3 | 13号风箱真空度 | 0.063 7 | 南烟道温度 | 0.055 2 |
2号风箱真空度 | 0.101 8 | 5号风箱废气温度 | 0.085 2 | 北烟道温度 | 0.063 1 | 高炉返矿 | 0.055 0 |
Table 3 Results of MIC
水分 | 粒度 | ||||||
---|---|---|---|---|---|---|---|
工艺参数 | MIC | 工艺参数 | MIC | 工艺参数 | MIC | 工艺参数 | MIC |
风机风量 | 0.215 2 | 1号风箱真空度 | 0.101 1 | 风机风量 | 0.115 9 | 圆辊速度 | 0.062 6 |
11号风箱真空度 | 0.177 4 | 5号风箱真空度 | 0.099 9 | 钒钛铁精粉 | 0.105 4 | 20号风箱废气温度 | 0.061 9 |
钒钛铁精粉 | 0.158 8 | 高炉返矿 | 0.095 1 | 2号风门开度 | 0.102 8 | 5号风箱真空度 | 0.059 8 |
7号风箱真空度 | 0.132 0 | 1号风门开度 | 0.094 9 | 自返矿 | 0.084 1 | 21号风箱废气温度 | 0.059 1 |
钙石灰粉 | 0.126 3 | 1号风箱废气温度 | 0.093 2 | 1号风门开度 | 0.083 0 | 3号风箱废气温度 | 0.058 6 |
2号风门开度 | 0.116 5 | 烧结用白煤 | 0.091 6 | 7号风箱废气温度 | 0.071 6 | 除尘矿 | 0.058 1 |
20号风箱废气温度 | 0.113 6 | 9号风箱真空度 | 0.087 4 | 烧结用白煤 | 0.069 4 | 22号风箱废气温度 | 0.056 4 |
自返矿 | 0.106 0 | 9号风箱废气温度 | 0.086 9 | 钙石灰粉 | 0.065 1 | 1号风箱废气温度 | 0.055 7 |
7号风箱废气温度 | 0.104 9 | 11号风箱废气温度 | 0.085 3 | 13号风箱真空度 | 0.063 7 | 南烟道温度 | 0.055 2 |
2号风箱真空度 | 0.101 8 | 5号风箱废气温度 | 0.085 2 | 北烟道温度 | 0.063 1 | 高炉返矿 | 0.055 0 |
算法 | MAE | MSE | RMSE |
---|---|---|---|
LGBM | 0.233 02 | 0.094 58 | 0.307 54 |
RF | 0.222 21 | 0.090 15 | 0.300 25 |
ET | 0.198 21 | 0.072 47 | 0.269 21 |
RF-ET | 0.102 12 | 0.019 82 | 0.140 79 |
Table 4 Comparison results of particle size model
算法 | MAE | MSE | RMSE |
---|---|---|---|
LGBM | 0.233 02 | 0.094 58 | 0.307 54 |
RF | 0.222 21 | 0.090 15 | 0.300 25 |
ET | 0.198 21 | 0.072 47 | 0.269 21 |
RF-ET | 0.102 12 | 0.019 82 | 0.140 79 |
算法 | MAE | MSE | RMSE |
---|---|---|---|
LGBM | 0.154 35 | 0.040 07 | 0.200 19 |
RF | 0.144 80 | 0.038 52 | 0.196 27 |
ET | 0.136 11 | 0.034 01 | 0.184 41 |
RF-ET | 0.078 52 | 0.011 23 | 0.105 95 |
Table 5 Comparison results of moisture model
算法 | MAE | MSE | RMSE |
---|---|---|---|
LGBM | 0.154 35 | 0.040 07 | 0.200 19 |
RF | 0.144 80 | 0.038 52 | 0.196 27 |
ET | 0.136 11 | 0.034 01 | 0.184 41 |
RF-ET | 0.078 52 | 0.011 23 | 0.105 95 |
模型 | 置信水平 | PICP | F | |
---|---|---|---|---|
LGBM-KDE | 95% | 0.950 66 | 0.602 58 | 1.208 84 |
90% | 0.900 57 | 0.490 30 | 1.249 45 | |
85% | 0.851 23 | 0.414 60 | 1.258 36 | |
RF-KDE | 95% | 0.950 28 | 0.611 95 | 1.201 73 |
90% | 0.900 19 | 0.487 00 | 1.251 66 | |
85% | 0.850 47 | 0.397 54 | 1.271 17 | |
ET-KDE | 95% | 0.950 28 | 0.580 73 | 1.224 70 |
90% | 0.899 43 | 0.453 16 | 1.277 98 | |
85% | 0.850 47 | 0.376 63 | 1.288 29 | |
RF-ET-KDE | 95% | 0.951 80 | 0.288 44 | 1.493 56 |
90% | 0.902 85 | 0.228 38 | 1.497 02 | |
85% | 0.851 23 | 0.188 96 | 1.466 57 |
Table 6 Interval prediction comparison results of particle size
模型 | 置信水平 | PICP | F | |
---|---|---|---|---|
LGBM-KDE | 95% | 0.950 66 | 0.602 58 | 1.208 84 |
90% | 0.900 57 | 0.490 30 | 1.249 45 | |
85% | 0.851 23 | 0.414 60 | 1.258 36 | |
RF-KDE | 95% | 0.950 28 | 0.611 95 | 1.201 73 |
90% | 0.900 19 | 0.487 00 | 1.251 66 | |
85% | 0.850 47 | 0.397 54 | 1.271 17 | |
ET-KDE | 95% | 0.950 28 | 0.580 73 | 1.224 70 |
90% | 0.899 43 | 0.453 16 | 1.277 98 | |
85% | 0.850 47 | 0.376 63 | 1.288 29 | |
RF-ET-KDE | 95% | 0.951 80 | 0.288 44 | 1.493 56 |
90% | 0.902 85 | 0.228 38 | 1.497 02 | |
85% | 0.851 23 | 0.188 96 | 1.466 57 |
模型 | 置信水平 | PICP | F | |
---|---|---|---|---|
LGBM-KDE | 95% | 0.951 42 | 0.503 75 | 1.286 33 |
90% | 0.900 57 | 0.414 08 | 1.311 91 | |
85% | 0.850 47 | 0.351 91 | 1.309 14 | |
RF-KDE | 95% | 0.950 66 | 0.494 05 | 1.293 70 |
90% | 0.899 43 | 0.401 61 | 1.321 51 | |
85% | 0.850 09 | 0.340 49 | 1.318 54 | |
ET-KDE | 95% | 0.950 28 | 0.484 68 | 1.301 24 |
90% | 0.900 19 | 0.380 80 | 1.340 77 | |
85% | 0.85123 | 0.319 98 | 1.338 02 | |
RF-ET-KDE | 95% | 0.952 56 | 0.229 15 | 1.563 78 |
90% | 0.903 23 | 0.182 32 | 1.551 03 | |
85% | 0.858 82 | 0.153 17 | 1.517 96 |
Table 7 Interval prediction comparison results of moisture
模型 | 置信水平 | PICP | F | |
---|---|---|---|---|
LGBM-KDE | 95% | 0.951 42 | 0.503 75 | 1.286 33 |
90% | 0.900 57 | 0.414 08 | 1.311 91 | |
85% | 0.850 47 | 0.351 91 | 1.309 14 | |
RF-KDE | 95% | 0.950 66 | 0.494 05 | 1.293 70 |
90% | 0.899 43 | 0.401 61 | 1.321 51 | |
85% | 0.850 09 | 0.340 49 | 1.318 54 | |
ET-KDE | 95% | 0.950 28 | 0.484 68 | 1.301 24 |
90% | 0.900 19 | 0.380 80 | 1.340 77 | |
85% | 0.85123 | 0.319 98 | 1.338 02 | |
RF-ET-KDE | 95% | 0.952 56 | 0.229 15 | 1.563 78 |
90% | 0.903 23 | 0.182 32 | 1.551 03 | |
85% | 0.858 82 | 0.153 17 | 1.517 96 |
1 | Li Y F, Zhang Q W, Zhu Y,et al.A model study on raw material chemical composition to predict sinter quality based on GA-RNN[J].Computational Intelligence and Neuroscience,2022,2022:3343427. |
2 | Liu S, Lyu Q, Liu X J,et al.Synthetically predicting the quality index of sinter using machine learning model[J].Ironmaking & Steelmaking,2020,47(7):828-836. |
3 | Xia G L, Wu Z X, Liu M Y,et al.Prediction interval estimation of sinter drum index based on light gradient boosting machine and kernel density estimation[J].Ironmaking & Steelmaking,2023,50(8):909-920. |
4 | Liu S, Liu X J, Lyu Q,et al.Comprehensive system based on a DNN and LSTM for predicting sinter composition[J].Applied Soft Computing,2020,95:106574. |
5 | Yang C, Yang C J, Li J F,et al.Forecasting of iron ore sintering quality index:a latent variable method with deep inner structure[J].Computers in Industry,2022,141:103713. |
6 | Jiang Y S, Yang N, Yao Q Q,et al.Real‑time moisture control in sintering process using offline‑online NARX neural networks[J].Neurocomputing,2020,396:209-215. |
7 | 刘月明,刘小杰,吕庆,等.基于烧结大数据预测小于10 mm烧结矿含量模型[J].中国冶金,2019,29(11):31-38. |
Liu Yue‑ming, Liu Xiao‑jie, Qing Lyu,et al.Prediction model of sinter content less than 10 mm based on sintering big data[J].China Metallurgy,2019,29(11):31-38. | |
8 | Ren Y Q, Huang C Q, Jiang Y S,et al.Neural network prediction model for sinter mixture water content based on KPCA-GA optimization[J].Metals,2022,12(8):1287. |
9 | Li D C, Huang W T, Chen C C,et al.Employing box plots to build high‑dimensional manufacturing models for new products in TFT-LCD plants[J].Neurocomputing,2014,142(sup1):73-85. |
10 | Reshef D N, Reshef Y A, Finucane H K,et al.Detecting novel associations in large data sets[J].Science,2011,334(6062):1518-1524. |
11 | 丁敬国,郭锦华.基于主成分分析协同随机森林算法的热连轧带钢宽度预测[J].东北大学学报(自然科学版),2021,42(9):1268-1274,1289. |
Ding Jing‑guo, Guo Jin‑hua.Prediction of rough rolling width based on principal component analysis collaborated with random forest algorithm[J].Journal of Northeastern University (Natural Science),2021,42(9):1268-1274,1289. | |
12 | Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140. |
13 | 朱子龙,张立臣.基于堆叠极限树集成算法的信息物理系统入侵检测方法[J].计算机应用与软件,2021,38(11):314-321. |
Zhu Zi‑long, Zhang Li‑chen.Intrusion detection method of cyber‑physical system based on stacking extra tree integration algorithm[J].Computer Applications and Software,2021,38(11):314-321. | |
14 | 李泉伦,陈争光,焦峰.基于Stacking集成学习的近红外光谱油页岩含油率预测[J].光谱学与光谱分析,2023,43(4):1030-1036. |
Li Quan‑lun, Chen Zheng‑guang, Jiao Feng.Prediction of oil content in oil shale by near‑infrared spectroscopy based on stacking ensemble learning[J].Spectroscopy and Spectral Analysis,2023,43(4):1030-1036. | |
15 | Zhang L, Lu S Y, Ding Y F,et al.Probability prediction of short‑term user‑level load based on random forest and kernel density estimation[J].Energy Reports,2022,8(sup5):1130-1138. |
16 | Zhou B W, Ma X J, Luo Y H,et al.Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J].IEEE Access,2019,7:165279-165292. |
17 | Al Fuhaid A F, Alanazi H.Prediction of chloride diffusion coefficient in concrete modified with supplementary cementitious materials using machine learning algorithms[J].Materials,2023,16(3):1277. |
18 | Peng G Z, Cheng Y L, Wang H W,et al.Industrial IoT‑enabled prediction interval estimation of mechanical performances for hot‑rolling steel[J].IEEE Transactions on Instrumentation and Measurement,2022,71:3508010. |
19 | Du B G, Huang S, Guo J,et al.Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks[J].Applied Soft Computing,2022,122:108875. |
[1] | ZHOU Hao-yu, FAN Xiao-hui, LI Qian, GAN Min. Effects of Hydrogen-Based Gas Injection on the Release of Typical Pollutants in the Sintering Process [J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 260-267. |
[2] | JIA Feng-rui, WANG En-gang, HE Ji-cheng, DONG Hui. Analysis of Flue Gas SO2 Distribution and Influencing Factors During Sintering Process [J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 661-666. |
[3] | ZHAO Liang, LI Xiao-ling, ZHANG Ge, SUN Wen-qiang. Test and Evaluation of Dust Emissions During Sintering Process in an Iron and Steel Enterprise [J]. Journal of Northeastern University Natural Science, 2017, 38(3): 356-360. |
[4] | GAO Qiang-jian, WEI Guo, LIU Chang-sheng, SHEN Feng-man. Effect of Binary Basicity on Sintering Process and Quality of Indonesia Vanadium Titanium Magnetite [J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1726-1730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||