Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (10): 1379-1385.DOI: 10.12068/j.issn.1005-3026.2024.10.002
• Information & Control • Previous Articles
Meng-yuan LIU, Zhao-xia WU(), Jin-yang WANG, Guang-lei XIA
Received:
2023-05-22
Online:
2024-10-31
Published:
2024-12-31
Contact:
Zhao-xia WU
About author:
WU Zhao-xia,E-mail: ysuwzx@126.comCLC Number:
Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385.
参数类型 | 序号 | 参数名称及单位 | 序号 | 参数名称及单位 |
---|---|---|---|---|
单位时间原料下料量 | 1 2 | 石灰粉/(kg·s-1) 烧结用白煤/(kg·s-1) | 3 4 | 除尘矿/(kg·s-1) 铁粉/(kg·s-1) |
混合料 | 5 7 9 | 混合料铁质量分数/% 混合料氧化钙质量分数/% 混合料水分质量分数/% | 6 8 | 混合料五氧化二钒质量分数/% 混合料二氧化硅质量分数/% |
操作 | 10 12 14 16 18 20 | 圆辊给料机线速度/(m·min-1) 烧结机线速度/(m·min-1) 煤气流量/(m3·min-1) 铺底料斗料量/t 助燃风温度/°C 助燃风流量/(m3·min-1) | 11 13 15 17 19 21 | 九辊布料器线速度/(m·min-1) 点火器温度/°C 风机风量/(m3·min-1) 2个风门开度/% 助燃风压力/kPa 烧结料层厚度/mm |
状态 | 22 24 26~39 | 南大烟道平均温度/°C 北大烟道平均温度/°C 14个风箱废气温度/°C | 23 25 40~53 | 南大烟道平均负压/kPa 北大烟道平均负压/kPa 14个风箱负压/kPa |
输出 | 54 | 透气性指数/(m3·h-1·kPa) |
Table 1 Important parameters of sintering process
参数类型 | 序号 | 参数名称及单位 | 序号 | 参数名称及单位 |
---|---|---|---|---|
单位时间原料下料量 | 1 2 | 石灰粉/(kg·s-1) 烧结用白煤/(kg·s-1) | 3 4 | 除尘矿/(kg·s-1) 铁粉/(kg·s-1) |
混合料 | 5 7 9 | 混合料铁质量分数/% 混合料氧化钙质量分数/% 混合料水分质量分数/% | 6 8 | 混合料五氧化二钒质量分数/% 混合料二氧化硅质量分数/% |
操作 | 10 12 14 16 18 20 | 圆辊给料机线速度/(m·min-1) 烧结机线速度/(m·min-1) 煤气流量/(m3·min-1) 铺底料斗料量/t 助燃风温度/°C 助燃风流量/(m3·min-1) | 11 13 15 17 19 21 | 九辊布料器线速度/(m·min-1) 点火器温度/°C 风机风量/(m3·min-1) 2个风门开度/% 助燃风压力/kPa 烧结料层厚度/mm |
状态 | 22 24 26~39 | 南大烟道平均温度/°C 北大烟道平均温度/°C 14个风箱废气温度/°C | 23 25 40~53 | 南大烟道平均负压/kPa 北大烟道平均负压/kPa 14个风箱负压/kPa |
输出 | 54 | 透气性指数/(m3·h-1·kPa) |
过程参数 | MIC均值 | 过程参数 | MIC均值 |
---|---|---|---|
风机风量 | 0.766 | 九辊布料器线速度 | 0.100 |
1号风门开度 | 0.454 | 混合料五氧化二钒质量分数 | 0.099 |
2号风门开度 | 0.429 | 铺底料斗料量 | 0.086 |
除尘矿 | 0.238 | 南大烟道平均温度 | 0.085 |
铁粉 | 0.180 | 烧结用白煤 | 0.063 |
石灰粉 | 0.176 | 混合料总铁质量分数 | 0.062 |
混合氧化钙质量分数 | 0.155 | 北大烟道平均温度 | 0.053 |
烧结机线速度 | 0.149 | 混合料水分质量分数 | 0.050 |
南大烟道平均负压 | 0.127 | 点火器温度 | 0.046 |
混合料二氧化硅质量分数 | 0.124 | 助燃风压力 | 0.043 |
圆辊给料机线速度 | 0.123 | 煤气流量 | 0.030 |
北大烟道平均负压 | 0.120 | 助燃风流量 | 0.026 |
助燃风温度 | 0.101 |
Table 2 MIC mean values of parameters related to sinter layer air permeability
过程参数 | MIC均值 | 过程参数 | MIC均值 |
---|---|---|---|
风机风量 | 0.766 | 九辊布料器线速度 | 0.100 |
1号风门开度 | 0.454 | 混合料五氧化二钒质量分数 | 0.099 |
2号风门开度 | 0.429 | 铺底料斗料量 | 0.086 |
除尘矿 | 0.238 | 南大烟道平均温度 | 0.085 |
铁粉 | 0.180 | 烧结用白煤 | 0.063 |
石灰粉 | 0.176 | 混合料总铁质量分数 | 0.062 |
混合氧化钙质量分数 | 0.155 | 北大烟道平均温度 | 0.053 |
烧结机线速度 | 0.149 | 混合料水分质量分数 | 0.050 |
南大烟道平均负压 | 0.127 | 点火器温度 | 0.046 |
混合料二氧化硅质量分数 | 0.124 | 助燃风压力 | 0.043 |
圆辊给料机线速度 | 0.123 | 煤气流量 | 0.030 |
北大烟道平均负压 | 0.120 | 助燃风流量 | 0.026 |
助燃风温度 | 0.101 |
模型 | MSE | MAE | R2 |
---|---|---|---|
BPNN | 0.112 8 | 0.131 4 | 0.938 7 |
SVR | 0.062 3 | 0.043 5 | 0.946 4 |
LSTM | 0.052 8 | 0.010 9 | 0.969 1 |
TST-LSTM | 0.033 8 | 0.006 2 | 0.998 6 |
Table 3 Comparison of different models for air permeability prediction of sinter layer
模型 | MSE | MAE | R2 |
---|---|---|---|
BPNN | 0.112 8 | 0.131 4 | 0.938 7 |
SVR | 0.062 3 | 0.043 5 | 0.946 4 |
LSTM | 0.052 8 | 0.010 9 | 0.969 1 |
TST-LSTM | 0.033 8 | 0.006 2 | 0.998 6 |
1 | Wright C S.Supersolidus sintering of high speed steels‑comparison of sintering theory with experimental observations[J].Solid State Phenomena,1992,25/26:463-470. |
2 | Loo C E, Wong D J.Fundamental insights into the sintering behaviour of goethitic ore blends[J].ISIJ International,2005,45(4):459-468. |
3 | 冯根生,吴胜利,赵佐军.改善厚料层烧结热态透气性的研究[J].烧结球团,2011,36(1):1-5. |
Feng Gen‑sheng, Wu Sheng‑li, Zhao Zuo‑jun.Study on improving thermal air permeability of sintering of thick material layer[J].Sintering and Pelletizing,2011,36(1):1-5. | |
4 | 周文胜,王梅菊.改善烧结混合料透气性的途径探析[J].冶金与材料,2021,41(6):185-186. |
Zhou Wen‑sheng, Wang Mei‑ju.Pathway to improve the air permeability of sintered mixture[J].Metallurgy and Materials,2021,41(6):185-186. | |
5 | Shomorony I.Data‑driven precision medicine through the analysis of biological functional modules[J].Cell Reports Medicine,2022,3(12):100876. |
6 | Fluke C J, Hegarty S E, MacMahon C O M.Understanding the human in the design of cyber‑human discovery systems for data‑driven astronomy[J].Astronomy and Computing,2020,33:100423. |
7 | Tipu R K, Panchal V R, Pandya K S.An ensemble approach to improve BPNN model precision for predicting compressive strength of high‑performance concrete[J].Structures,2022,45:500-508. |
8 | Kalanaki M, Soltani J.Performance assessment among hybrid algorithms in tuning SVR parameters to predict pipe failure rates[J].Advances in Computer Science,2013,2(5):40-46. |
9 | Vaswani A, Shazeer N, Parmar N,et al.Attention is all you need[C]//The 31st Conference on Neural Information Processing Systems. Long Beach:2017:6000-6010. |
10 | Hochreiter S, Schmidhuber J.Long short‑term memory[J].Neural Computation,1997,9(8):1735-1780. |
11 | 邱先彩,蔡汝卓,付守澄.Voice公式在烧结实践中的应用[J].烧结球团,1986(3):16-27. |
Qiu Xian‑cai, Cai Ru‑zhuo, Fu Shou‑cheng.Application of Voice formula in sintering practice[J].Sintering and Pelletizing,1986(3):16-27. | |
12 | Cartan J.Methods and systems for displaying graphical markers in a mixed box chart:U.S.patent 8451271[P].2013-05-28. |
13 | Felippe H, Viol A, De Araujo D B,et al.Threshold‑free estimation of entropy from a Pearson matrix[EB/OL].[2023-03-06]. |
14 | Liu M D, Yang Z W, Guo Y,et al.MICAR:nonlinear association rule mining based on maximal information coefficient[J].Knowledge and Information Systems,2022,64(11):3017-3042. |
15 | 李文,陈佳伟,刘瑞雪,等.张量时间序列预测T-transformer模型[J].计算机工程与应用,2023,59(11):57-62. |
Li Wen, Chen Jia‑wei, Liu Rui‑xue,et al.Tensor time series prediction T-transformer model[J].Computer Engineering and Applications,2023,59(11):57-62. |
[1] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[2] | Lin LIU, Yu-hao SONG. Improved WLS Ultra-wideband Positioning Algorithm Based on Error Factor [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1235-1243. |
[3] | Xiao-peng LI, Jia-xing FU, Hai-long LIU, Meng YIN. RBF Neural Network Compensation Sliding Mode Control Strategy for Flexible Space Manipulators [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1258-1267. |
[4] | Wei-wei LIU, Bing-jun LIU, Huan-qiang LIU, Ze-yuan LIU. Defect Identification Method for Laser Melting Deposition Process [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1150-1158. |
[5] | Tao REN, Xin-liang LIU, Hong-feng CHEN, Yan-lu MA. Segmented Estimation Method for Early Warning Magnitude Based on Convolutional Neural Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1073-1079. |
[6] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
[7] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
[8] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
[9] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[10] | Pei-yun XUE, Jing BAI, Nan ZHANG, Jian-xing ZHAO. VMD Based Binary Channels Speech Feature Map Extraction Algorithm for Dysarthria [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 793-801. |
[11] | Hong-tu XIE, Jia-xing CHEN, Lin ZHANG, Nan-nan ZHU. Lightweight Ship Recognition Algorithm Based on SNN in SAR Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 474-482. |
[12] | Meng CHEN, Yu HONG. Test Study on Drying Shrinkage Properties of Engineered Cementitious Composites with RTP‐PVA Hybrid Fibre [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 407-414. |
[13] | Guang-lei XIA, Zhao-xia WU, Meng-yuan LIU, Yu-shan JIANG. Prediction of Sinter Chemical Indexes Based on GMM-KNN-LSTM [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 314-322. |
[14] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
[15] | Yan-xia LYU, Shuai HAO, Guang-tong QIAO, Ye XING. A Social Recommendation Algorithm Based on Graph Neural Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 10-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||