1 |
王春方,孙长城,明东,等.脑卒中后抑郁患者脑电信号长时程相关性分析[J].仪器仪表学报,2017,38(6):1361-1367.
|
|
Wang Chun‐fang, Sun Chang‐cheng, Ming Dong,et al.Long‐range temporal correlation analysis of EEG oscillation in poststroke depression patients[J].Chinese Journal of Scientific Instrument,2017,38(6):1361-1367.
|
2 |
李光林,郑悦,吴新宇,等.医疗康复机器人研究进展及趋势[J].中国科学院院刊,2015,30(6):793-802.
|
|
Li Guang‐lin, Zheng Yue, Wu Xin‐yu,et al.State of the art of medical and rehabilitation robotics and their perspective[J].Bulletin of Chinese Academy of Sciences,2015,30(6):793-802.
|
3 |
Pinto‐Fernandez D, Torricelli D, Sanchez‐Villamanan M D C,et al.Performance evaluation of lower limb exoskeletons:a systematic review[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2020,28(7):1573-1583.
|
4 |
胡进,侯增广,陈翼雄,等.下肢康复机器人及其交互控制方法[J].自动化学报,2014,40(11):2377-2390.
|
|
Hu Jin, Hou Zeng‐guang, Chen Yi‐xiong,et al.Lower limb rehabilitation robots and interactive control methods[J].Acta Automatica Sinica,2014,40(11):2377-2390.
|
5 |
侯增广,赵新刚,程龙,等.康复机器人与智能辅助系统的研究进展[J].自动化学报,2016,42(12):1765-1779.
|
|
Hou Zeng‐guang, Zhao Xin‐gang, Cheng Long,et al.Recent advances in rehabilitation robots and intelligent assistance systems[J].Acta Automatica Sinica,2016,42(12):1765-1779.
|
6 |
Zhou B, Wang H, Hu F,et al.Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning[J].Computer Methods and Programs in Biomedicine,2020,193:105486.
|
7 |
Shafiul H S M, Siddiquee M R, Bai O.Supervised classification of EEG signals with score threshold regulation for pseudo‐online asynchronous detection of gait intention[C]//2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA),Boca Raton,2019:1476-1479.
|
8 |
李鹏海,王丽余,刘瀛涛,等.下肢运动想象和运动执行的EEG节律特性研究[J].仪器仪表学报,2018,39(3):207-214.
|
|
Li Peng‐hai, Wang Li‐yu, Liu Ying‐tao,et al.Study on EEG rhythm features of lower limb motor imagery and motor performance[J].Chinese Journal of Scientific Instrument,2018,39(3):207-214.
|
9 |
Shafiul H S M, Siddiquee M R, Atri R,et al.Prediction of gait intention from pre‐movement EEG signals:a feasibility study[J].Journal of Neuro Engineering and Rehabilitation,2020,17(1):50.
|
10 |
Mohseni M, Shalchyan V, Jochumsen M,et al.Upper limb complex movements decoding from pre‑movement EEG signals using wavelet common spatial patterns[J].Computer Methods and Programs in Biomedicine,2020,183:105076.
|
11 |
Liu D, Chen W H, Chavarriaga R,et al.Decoding of self‐paced lower‐limb movement intention:a case study on the influence factors[J].Frontiers in Human Neuroscience,2017,11:560.
|
12 |
Wang K, Xu M P, Wang Y J,et al.Enhance decoding of pre‐movement EEG patterns for brain‐computer interfaces[J].Journal of Neural Engineering,2020,17(1):016033.
|
13 |
Seeck M, Koessler L, Bast T,et al.The standardized EEG electrode array of the IFCN[J].Clinical Neurophysiology,2017,128(10):2070-2077.
|
14 |
Alchalabi B, Faubert J, Labbé D R.A multi‐modal modified feedback self‐paced BCI to control the gait of an avatar[J].Journal of Neural Engineering,2021,18(5):056005.
|
15 |
Dai G H, Zhou J, Huang J H,et al.HS‐CNN:a CNN with hybrid convolution scale for EEG motor imagery classification[J].Journal of Neural Engineering,2020,17(1):016025.
|
16 |
Zhou B, Feng N S, Wang H,et al.Non‐invasive dual attention TCN for electromyography and motion data fusion in lower limb ambulation prediction[J].Journal of Neural Engineering,2022,19(4):046051.
|
17 |
Bai S J, Kolter J Z, Koltun V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].(2018-04-09)[2023-02-01]..
|
18 |
Jochumsen M, Niazi I K.Detection and classification of single‐trial movement‐related cortical potentials associated with functional lower limb movements[J].Journal of Neural Engineering,2020,17(3):035009.
|