Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network[J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775.
Girshick R, Donahue J, Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:580-587.
Bochkovskiy A, Wang C Y, Liao H Y M.YOLOv4:Optimal speed and accuracy of object detection [EB/OL].(2020-04-23)[2022-12-25]..
6
He K M, Zhang X Y, Ren S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
7
Liu S, Qi L, Qin H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:8759-8768.
8
Wang C Y, Liao H Y, Wu Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle,2020:1571-1580.
9
Han K, Wang Y H, Tian Q,et al.GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,2020:1577-1586.
10
Chollet F.Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,2017:1800-1807.
11
Hu J, Shen L, Albanie S,et al.Squeeze‑and‑excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
12
Zheng Z H, Wang P, Liu W,et al.Distance‑IOU loss:faster and better learning for bounding box regression[EB/OL].(2019-11-19)[2022-12-25]..
08287.pdf.
13
Gevorgyan Z,SIOU loss:more powerful learning for bounding box regression[EB/OL].(2022-05-25)[2022-12-25]..