
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 125-133.DOI: 10.12068/j.issn.1005-3026.2025.20240105
• Resources & Civil Engineering • Previous Articles Next Articles
Hao-ran GAO, Hong-lei LIU, De-fu CHE(
), Tian-xing LAN
Received:2024-05-07
Online:2025-11-15
Published:2026-02-07
Contact:
De-fu CHE
CLC Number:
Hao-ran GAO, Hong-lei LIU, De-fu CHE, Tian-xing LAN. IWOA-Elman Neural Network and Its Application to Backfill Strength Prediction[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 125-133.
| 测试函数 | 评价标准 | GA | PSO | GWO | WOA | IWOA |
|---|---|---|---|---|---|---|
| F1 | 平均值 | 96 196.995 2 | 26.193 0 | 1.44E-17 | 1.44E-71 | 4.53E-233 |
| 标准差 | 15 688.467 3 | 7.782 6 | 1.26E-17 | 7.24E-71 | 0 | |
| 运行时间/s | 0.046 7 | 0.094 9 | 0.088 5 | 0.032 4 | 0.035 9 | |
| 最优解 | 63 125.415 2 | 14.353 6 | 1.37E-18 | 7.35E-90 | 0 | |
| F2 | 平均值 | 40.763 2 | 4.841 5 | 8.74E-17 | 5.61E-51 | 4.09E-123 |
| 标准差 | 6.721 5 | 1.821 6 | 4.864E-17 | 1.59E-50 | 2.09E-122 | |
| 运行时间/s | 0.045 9 | 0.084 1 | 0.052 1 | 0.026 4 | 0.028 5 | |
| 最优解 | 27.947 0 | 2.367 2 | 2.20E-17 | 1.37E-58 | 0 | |
| F3 | 平均值 | 37 988.551 5 | 689.380 3 | 1.72E-05 | 40 759.439 9 | 3.99E-173 |
| 标准差 | 9 551.639 6 | 1 559.514 7 | 3.51E-05 | 13 734.184 9 | 0 | |
| 运行时间/s | 0.128 4 | 0.170 7 | 0.134 5 | 0.106 0 | 0.109 8 | |
| 最优解 | 22 527.125 2 | 43.465 7 | 1.35E-08 | 12 273.764 9 | 0 | |
| F4 | 平均值 | 69.545 0 | 3.742 7 | 1.04E-06 | 48.771 9 | 2.38E-100 |
| 标准差 | 7.971 9 | 0.961 3 | 1.18E-06 | 28.136 3 | 1.30E-99 | |
| 运行时间/s | 0.045 0 | 0.085 9 | 0.048 8 | 0.024 7 | 0.027 9 | |
| 最优解 | 42.183 1 | 1.881 9 | 4.90E-08 | 0.430 6 | 0 | |
| F5 | 平均值 | 10 136.241 4 | 0.627 5 | 0.684 0 | 0.430 2 | 0.130 6 |
| 标准差 | 5 161.029 3 | 0.157 9 | 0.339 9 | 0.240 5 | 0.039 9 | |
| 运行时间/s | 0.044 8 | 0.085 2 | 0.048 9 | 0.024 5 | 0.026 9 | |
| 最优解 | 1 385.651 2 | 0.329 5 | 0.158 4 | 0.099 5 | 0.051 2 |
Table 1 Comparison of optimization performance of five algorithms
| 测试函数 | 评价标准 | GA | PSO | GWO | WOA | IWOA |
|---|---|---|---|---|---|---|
| F1 | 平均值 | 96 196.995 2 | 26.193 0 | 1.44E-17 | 1.44E-71 | 4.53E-233 |
| 标准差 | 15 688.467 3 | 7.782 6 | 1.26E-17 | 7.24E-71 | 0 | |
| 运行时间/s | 0.046 7 | 0.094 9 | 0.088 5 | 0.032 4 | 0.035 9 | |
| 最优解 | 63 125.415 2 | 14.353 6 | 1.37E-18 | 7.35E-90 | 0 | |
| F2 | 平均值 | 40.763 2 | 4.841 5 | 8.74E-17 | 5.61E-51 | 4.09E-123 |
| 标准差 | 6.721 5 | 1.821 6 | 4.864E-17 | 1.59E-50 | 2.09E-122 | |
| 运行时间/s | 0.045 9 | 0.084 1 | 0.052 1 | 0.026 4 | 0.028 5 | |
| 最优解 | 27.947 0 | 2.367 2 | 2.20E-17 | 1.37E-58 | 0 | |
| F3 | 平均值 | 37 988.551 5 | 689.380 3 | 1.72E-05 | 40 759.439 9 | 3.99E-173 |
| 标准差 | 9 551.639 6 | 1 559.514 7 | 3.51E-05 | 13 734.184 9 | 0 | |
| 运行时间/s | 0.128 4 | 0.170 7 | 0.134 5 | 0.106 0 | 0.109 8 | |
| 最优解 | 22 527.125 2 | 43.465 7 | 1.35E-08 | 12 273.764 9 | 0 | |
| F4 | 平均值 | 69.545 0 | 3.742 7 | 1.04E-06 | 48.771 9 | 2.38E-100 |
| 标准差 | 7.971 9 | 0.961 3 | 1.18E-06 | 28.136 3 | 1.30E-99 | |
| 运行时间/s | 0.045 0 | 0.085 9 | 0.048 8 | 0.024 7 | 0.027 9 | |
| 最优解 | 42.183 1 | 1.881 9 | 4.90E-08 | 0.430 6 | 0 | |
| F5 | 平均值 | 10 136.241 4 | 0.627 5 | 0.684 0 | 0.430 2 | 0.130 6 |
| 标准差 | 5 161.029 3 | 0.157 9 | 0.339 9 | 0.240 5 | 0.039 9 | |
| 运行时间/s | 0.044 8 | 0.085 2 | 0.048 9 | 0.024 5 | 0.026 9 | |
| 最优解 | 1 385.651 2 | 0.329 5 | 0.158 4 | 0.099 5 | 0.051 2 |
| 预测模型 | ||||||||
|---|---|---|---|---|---|---|---|---|
| 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
| Elman | 0.126 4 | 0.163 0 | 0.186 5 | 0.182 2 | 0.965 1 | 0.921 5 | 12.640 0 | 16.300 0 |
| PSO-Elman | 0.114 6 | 0.155 8 | 0.135 0 | 0.175 4 | 0.981 8 | 0.927 3 | 9.997 7 | 13.866 6 |
| WOA-Elman | 0.092 4 | 0.139 9 | 0.133 0 | 0.154 3 | 0.982 3 | 0.943 7 | 7.164 2 | 10.403 6 |
| IWOA-Elman | 0.093 3 | 0.046 6 | 0.130 4 | 0.050 7 | 0.983 0 | 0.993 9 | 6.774 9 | 3.326 9 |
Table 2 Comparative results of algorithm tests and evaluation indicators of prediction models
| 预测模型 | ||||||||
|---|---|---|---|---|---|---|---|---|
| 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
| Elman | 0.126 4 | 0.163 0 | 0.186 5 | 0.182 2 | 0.965 1 | 0.921 5 | 12.640 0 | 16.300 0 |
| PSO-Elman | 0.114 6 | 0.155 8 | 0.135 0 | 0.175 4 | 0.981 8 | 0.927 3 | 9.997 7 | 13.866 6 |
| WOA-Elman | 0.092 4 | 0.139 9 | 0.133 0 | 0.154 3 | 0.982 3 | 0.943 7 | 7.164 2 | 10.403 6 |
| IWOA-Elman | 0.093 3 | 0.046 6 | 0.130 4 | 0.050 7 | 0.983 0 | 0.993 9 | 6.774 9 | 3.326 9 |
样本 序号 | 抗压强度 实际值/MPa | Elman | PSO-Elman | WOA-Elman | IWOA-Elman | ||||
|---|---|---|---|---|---|---|---|---|---|
抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | ||
| MPa | MPa | MPa | MPa | ||||||
| 预测准确率 / % | 83.702 5 | 86.135 0 | 89.597 5 | 96.597 5 | |||||
| 1 | 1.85 | 1.670 3 | 9.71 | 1.578 0 | 14.70 | 2.058 4 | 11.26 | 1.794 0 | 3.03 |
| 2 | 0.43 | 0.576 6 | 34.09 | 0.557 3 | 29.60 | 0.361 0 | 16.05 | 0.412 5 | 4.07 |
| 3 | 1.67 | 1.450 9 | 13.12 | 1.620 2 | 2.98 | 1.750 8 | 4.84 | 1.598 4 | 4.29 |
| 4 | 2.13 | 1.953 9 | 8.27 | 1.955 7 | 8.18 | 2.331 4 | 9.46 | 2.177 2 | 2.22 |
Table 3 Model prediction error and accuracy
样本 序号 | 抗压强度 实际值/MPa | Elman | PSO-Elman | WOA-Elman | IWOA-Elman | ||||
|---|---|---|---|---|---|---|---|---|---|
抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | 抗压强度 预测值 | 相对 误差/% | ||
| MPa | MPa | MPa | MPa | ||||||
| 预测准确率 / % | 83.702 5 | 86.135 0 | 89.597 5 | 96.597 5 | |||||
| 1 | 1.85 | 1.670 3 | 9.71 | 1.578 0 | 14.70 | 2.058 4 | 11.26 | 1.794 0 | 3.03 |
| 2 | 0.43 | 0.576 6 | 34.09 | 0.557 3 | 29.60 | 0.361 0 | 16.05 | 0.412 5 | 4.07 |
| 3 | 1.67 | 1.450 9 | 13.12 | 1.620 2 | 2.98 | 1.750 8 | 4.84 | 1.598 4 | 4.29 |
| 4 | 2.13 | 1.953 9 | 8.27 | 1.955 7 | 8.18 | 2.331 4 | 9.46 | 2.177 2 | 2.22 |
| [1] | 刘具, 秦坤.我国煤炭绿色开采技术进展[J]. 矿业安全与环保,2023, 50(6):7-15. |
| Liu Ju, Qin Kun. Progress of green coal mining technology in China[J]. Mining Safety & Environmental Protection, 2023, 50(6): 7-15. | |
| [2] | Williams E. Environmental effects of information and communications technologies[J]. Nature, 2011, 479(7373): 354-358. |
| [3] | 齐冲冲, 杨星雨, 李桂臣,等.新一代人工智能在矿山充填中的应用综述与展望[J]. 煤炭学报, 2021, 46(2): 688-700. |
| Qi Chong-chong, Yang Xing-yu, Li Gui-chen, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling[J].Journal of China Coal Society, 2021, 46(2): 688-700. | |
| [4] | 付自国, 乔登攀, 郭忠林,等.基于RSM-BBD的废石-风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3): 694-703. |
| Fu Zi-guo, Qiao Deng-pan, Guo Zhong-lin, et al. Experimental research on mixture proportion and strength of cemented hydraulic fill with waste rock and eolian sand based on RSM-BBD[J]. Journal of China Coal Society, 2018, 43(3): 694-703. | |
| [5] | 吴鹏,王贻明,吴爱祥,等.基于全面试验的钒铁矿开采充填材料配比优化研究[J]. 金属矿山, 2016(10): 5-10. |
| Wu Peng, Wang Yi-ming, Wu Ai-xiang, et al. Optimization of mining filling material proportioning for a vanadium iron ore based on the thorough tests [J]. Metal Mine, 2016, (10): 5-10. | |
| [6] | 王新民,徐东升.胶结充填料优化配比研究及强度预测[J].矿业快报,2006, 22(12):20-23. |
| Wang Xin-min, Xu Dong-sheng. Research on optimization proportioning of cemented filling material and strength forecasting[J]. Express Information of Mining Industry, 2006, 22(12): 20-23. | |
| [7] | 张钦礼,李谢平,杨伟.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),2013, 44(7):2867-2874. |
| Zhang Qin-li, Li Xie-ping, Yang Wei. Optimization of filling slurry ratio in a mine based on back-propagation neural network[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2867-2874. | |
| [8] | 吴炜,吉坤,张朋,等.基于ANN-PSO模型的充填体强度预测及其工程应用[J].矿业研究与开发,2020, 40(2):53-57. |
| Wu Wei, Ji Kun, Zhang Peng, et al. Strength prediction of filling body based on ANN-PSO model and its engineering application[J]. Mining Research and Development, 2020, 40(2): 53-57. | |
| [9] | Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
| [10] | Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518. |
| [11] | Hao J, Zhu C S, Guo X T. A new CIGWO-Elman hybrid model for power load forecasting[J]. Journal of Electrical Engineering & Technology, 2022, 17(2): 1319-1333. |
| [12] | Aljarah I, Faris H, Mirjalili S. Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22(1): 1-15. |
| [13] | 亓祥波,陈阳,郑铭.面向柔性作业车间调度的多策略鲸鱼优化算法[J]. 计算机系统应用,2023, 32(9):154-161. |
| Qi Xiang-bo, Chen Yang, Zheng Ming. Multi-strategy whale optimization algorithm for flexible job shop scheduling[J]. Computer Systems and Applications, 2023, 32(9): 154-161. | |
| [14] | 郝晓弘, 宋吉祥, 周强,等.混合策略改进的鲸鱼优化算法[J].计算机应用研究, 2020, 37(12): 3622-3626, 3655. |
| Hao Xiao-hong, Song Ji-xiang, Zhou Qiang, et al. Improved whale optimization algorithm based on hybrid strategy[J]. Application Research of Computers, 2020, 37(12): 3622-3626, 3655. | |
| [15] | Zhang Y F, Zhao J P, Wang L M, et al.An improved OIF Elman neural network based on CSO algorithm and its applications[J]. Computer Communications, 2021, 171: 148-156. |
| [16] | Gupta T, Kumar R. A novel feed-through Elman neural network for predicting the compressive and flexural strengths of eco-friendly jarosite mixed concrete: design, simulation and a comparative study [J]. Soft Computing, 2024, 28(1): 399-414. |
| [17] | Xiong S, Liu Z X, Min C D, et al. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm[J]. Materials, 2023, 16(1): 308. |
| [18] | Wan S C, Yang H J, Lin J W, et al. Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM[J]. Energy,2024, 310:133185. |
| [1] | Kun-meng LI, Zheng-rong LI, Zhi-peng XIONG, Yuan-hui LI. Experimental Study on Ground Pressure Control Mechanism in Continuous Mining of Gently Inclined Thin Veins [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 143-150. |
| [2] | Zhi-peng XIONG, Yuan-hui LI, Kun-meng LI, Gui-xuan XIAO. Analytical Solution of Surrounding Rock Stress and Displacement in Bidirectional Unequal Pressure Stope Under Supporting Stress [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1759-1768. |
| [3] | Zheng-ming YANG, Shuai XU, Xu-bo JI, Rui-qiang WANG. Field Experimental Study on Mechanical Properties of Self-swelling Split-Set [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1020-1027. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||