| [1] |
Kulatilake P H S W, Wu Q, Hudaverdi T, et al. Mean particle size prediction in rock blast fragmentation using neural networks[J]. Engineering Geology, 2010, 114(3/4): 298-311.
|
| [2] |
Shi X Z, Zhou J, Wu B B, et al. Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2):432-441.
|
| [3] |
Ke B, Pan R H, Zhang J, et al. Parameter optimization and fragmentation prediction of fan-shaped deep hole blasting in Sanxin Gold and Copper Mine[J]. Minerals, 2022, 12(7): 788.
|
| [4] |
Wang Y C, Guo Q P, Yang S J, et al. A prediction model for blasted block size grouping based on HC and RF-GA-BP neural network[J]. Arabian Journal of Geosciences, 2022, 15 (16): 1391.
|
| [5] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
| [6] |
Gao W, Karbasi M, Hasanipanah M, et al. Developing GPR model for forecasting the rock fragmentation in surface mines[J]. Engineering with Computers, 2018, 34(2): 339-345.
|
| [7] |
金长宇, 于佳强, 王强, 等. 基于集成学习CatBoost优化模型的爆堆大块率预测[J]. 东北大学学报(自然科学版), 2023, 44(12): 1743-1750.
|
|
Jin Chang-yu, Yu Jia-qiang, Wang Qiang, et al. Prediction of blasting fragment large block percentage ratio based on ensemble learning CatBoost model[J]. Journal of Northeastern University( Natural Science), 2023, 44(12): 1743-1750.
|
| [8] |
Gao H, Fu Z L. Forecast of blasting fragmentation distribution based on BP neural network[J]. Advanced Materials Research, 2012, 619: 3-8.
|
| [9] |
史秀志, 郭霆, 尚雪义, 等. 基于PCA-BP神经网络的岩石爆破平均粒径预测 [J]. 爆破, 2016, 33(2): 55-61.
|
|
Shi Xiu-zhi, Guo Ting, Shang Xue-yi, et al. Prediction of mean particle size of rock blast based on combination of PCA and BP neural networks[J]. Blasting, 2016, 33(2): 55-61.
|
| [10] |
Guo Q P, Yang S J, Wang Y C, et al. Prediction research for blasting peak particle velocity based on random GA-BP network group[J]. Arabian Journal of Geosciences, 2022, 15(15): 1351.
|
| [11] |
Yu J Y, Ren S J. Prediction and analysis method of mine blasting quality based on GA-BP neural network[J]. Mobile Information Systems, 2022 (1): 9239381.
|
| [12] |
Xing Y H, Li F F. Research on the influence of hidden layers on the prediction accuracy of GA-BP neural network[J]. Journal of Physics: Conference Series, 2020, 1486(2): 022010.
|
| [13] |
Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B. Cybernetics,1996, 26(1): 29-41.
|
| [14] |
Li X D, Liu K W, Zhao X R, et al. Study on rock fracturing in smooth blasting under initial stress[J]. Engineering Fracture Mechanics, 2024, 296: 109865.
|
| [15] |
赵翔, 郭小平, 朴志友, 等. BP神经网络在爆破块度预测中的应用研究[J]. 水泥技术, 2015 (1): 36-39.
|
|
Zhao Xiang, Guo Xiao-ping, Zhi-you Piao, et al. Application research of BP neural network in predication of rock fragmentation[J]. Cement Technology, 2015 (1): 36-39.
|
| [16] |
邓飞, 肖伟, 程秋亭, 等. 基于BP神经网络的爆破参数优化[J]. 矿业研究与开发, 2016, 36(4): 19-21.
|
|
Deng Fei, Xiao Wei, Cheng Qiu-ting, et al. Optimization of blasting parameters based on BP neural network[J]. Mining Research and Development, 2016, 36(4): 19-21.
|