
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (12): 132-140.DOI: 10.12068/j.issn.1005-3026.2025.20240158
• Resources & Civil Engineering • Previous Articles
Xiu-yan ZHOU, Hui ZHOU, Yu-tao GAO, Wen-hua WANG
Received:2024-08-05
Online:2025-12-15
Published:2026-02-09
Contact:
Xiu-yan ZHOU
CLC Number:
Xiu-yan ZHOU, Hui ZHOU, Yu-tao GAO, Wen-hua WANG. Morphology and Elemental Composition of PM2.5 Single Particle from Road Mobile Sources[J]. Journal of Northeastern University(Natural Science), 2025, 46(12): 132-140.
| 采样点 | 样品编号 | 采样日期 | 采样时间 | 温度/℃ | 相对湿度/% | PM2.5/(μg·m-3) | 气压/kPa |
|---|---|---|---|---|---|---|---|
| 点位Ⅰ | A1 | 2023-10-09 | 16:30—19:30 | 16 | 73 | 24 | 101.8 |
| A2 | 2023-10-10 | 16:07—19:07 | 17 | 67 | 28 | 102.1 | |
| A3 | 2023-10-11 | 16:30—19:30 | 18 | 68 | 46 | 102.1 | |
| 点位Ⅱ | B1 | 2023-10-02 | 15:22—18:22 | 20 | 51 | 27 | 101.2 |
| B2 | 2023-10-03 | 15:07—19:07 | 22 | 56 | 24 | 101.0 | |
| B3 | 2023-10-04 | 12:38—15:38 | 20 | 56 | 19 | 101.4 | |
| B4 | 2023-10-05 | 12:00—15:55 | 17 | 34 | 8 | 101.9 |
Table 1 Sample collection information
| 采样点 | 样品编号 | 采样日期 | 采样时间 | 温度/℃ | 相对湿度/% | PM2.5/(μg·m-3) | 气压/kPa |
|---|---|---|---|---|---|---|---|
| 点位Ⅰ | A1 | 2023-10-09 | 16:30—19:30 | 16 | 73 | 24 | 101.8 |
| A2 | 2023-10-10 | 16:07—19:07 | 17 | 67 | 28 | 102.1 | |
| A3 | 2023-10-11 | 16:30—19:30 | 18 | 68 | 46 | 102.1 | |
| 点位Ⅱ | B1 | 2023-10-02 | 15:22—18:22 | 20 | 51 | 27 | 101.2 |
| B2 | 2023-10-03 | 15:07—19:07 | 22 | 56 | 24 | 101.0 | |
| B3 | 2023-10-04 | 12:38—15:38 | 20 | 56 | 19 | 101.4 | |
| B4 | 2023-10-05 | 12:00—15:55 | 17 | 34 | 8 | 101.9 |
| 采样点 | 样品编号 | 单颗粒数量 | 粒子数分数/% | ||
|---|---|---|---|---|---|
| 烟尘颗粒 | 有机颗粒 | 非碳质颗粒 | |||
| 点位Ⅰ | A1 | 258 | 55.4 | 12.0 | 32.6 |
| A2 | 260 | 47.3 | 15.8 | 37.0 | |
| A3 | 223 | 38.6 | 18.8 | 42.6 | |
| 点位Ⅱ | B1 | 101 | 20.8 | 17.8 | 61.4 |
| B2 | 163 | 28.2 | 18.4 | 53.4 | |
| B3 | 164 | 28.7 | 17.1 | 54.3 | |
| B4 | 230 | 30.9 | 14.8 | 54.3 | |
Table 2 Particle number fraction of single particle
| 采样点 | 样品编号 | 单颗粒数量 | 粒子数分数/% | ||
|---|---|---|---|---|---|
| 烟尘颗粒 | 有机颗粒 | 非碳质颗粒 | |||
| 点位Ⅰ | A1 | 258 | 55.4 | 12.0 | 32.6 |
| A2 | 260 | 47.3 | 15.8 | 37.0 | |
| A3 | 223 | 38.6 | 18.8 | 42.6 | |
| 点位Ⅱ | B1 | 101 | 20.8 | 17.8 | 61.4 |
| B2 | 163 | 28.2 | 18.4 | 53.4 | |
| B3 | 164 | 28.7 | 17.1 | 54.3 | |
| B4 | 230 | 30.9 | 14.8 | 54.3 | |
| 颗粒类型 | (质量分数 平均值±标准差)/% | 颗粒数 | 粒子数分数/% | ||||
|---|---|---|---|---|---|---|---|
| 点位Ⅰ | 点位Ⅱ | 点位Ⅰ | 点位Ⅱ | 点位Ⅰ | 点位Ⅱ | ||
| 富Si | Si质 | Si(84.3±10.5) | Si(90±7) | 12 | 24 | 4.7 | 6.9 |
| Si+Al | Si(45.4±8.6), Al(25.8±6.9) | Si(41.9±7.7), Al(27.1±6.6) | 71 | 128 | 28.1 | 36.7 | |
| Si+Na | Si(37.9±10), Na(23.5±4.2) | Si(41.2±9.5), Na(24.8±4.6) | 23 | 35 | 9.1 | 10.0 | |
| Si+Ca | Si(31.5±7.5), Ca(20.9±3.7) | Si(34.7±6.2), Ca(23±5) | 12 | 13 | 4.7 | 3.7 | |
| Si+Mg | Si(33.7±4.7), Mg(23±3.9) | Si(35.8±10.7), Mg(26.2±9) | 6 | 12 | 2.4 | 3.4 | |
| Si+Fe | Si(36.3±14), Fe(18.7±4.6) | Si(35.3±7.8), Fe(29.9±4.5) | 6 | 5 | 2.4 | 1.4 | |
| Si+S | Si(24.4), S(17.9) | — | 1 | — | 0.4 | — | |
| 富Ca | Ca质 | Ca(86.8±9.9) | Ca(82.3±9.4) | 13 | 19 | 5.1 | 5.4 |
| Ca+Si | Ca(43.5±10), Si(23±5.3) | Ca(42.5±11.4), Si(23±5.7) | 14 | 24 | 5.5 | 6.9 | |
| Ca+Mg | Ca(36.4±10.8), Mg(33.5±10.7) | Ca(43.6±8.1), Mg(37.2±7.7) | 10 | 5 | 4.0 | 1.4 | |
| Ca+S | Ca(42.2±4.1), S(29.6±5.2) | Ca(53.4±7.6), S(37.6±4.6) | 6 | 5 | 2.4 | 1.4 | |
| Ca+其他 | — | — | 4 | 6 | 1.6 | 1.7 | |
Table 3 Types of elemental enrichment of irregular mineral particles
| 颗粒类型 | (质量分数 平均值±标准差)/% | 颗粒数 | 粒子数分数/% | ||||
|---|---|---|---|---|---|---|---|
| 点位Ⅰ | 点位Ⅱ | 点位Ⅰ | 点位Ⅱ | 点位Ⅰ | 点位Ⅱ | ||
| 富Si | Si质 | Si(84.3±10.5) | Si(90±7) | 12 | 24 | 4.7 | 6.9 |
| Si+Al | Si(45.4±8.6), Al(25.8±6.9) | Si(41.9±7.7), Al(27.1±6.6) | 71 | 128 | 28.1 | 36.7 | |
| Si+Na | Si(37.9±10), Na(23.5±4.2) | Si(41.2±9.5), Na(24.8±4.6) | 23 | 35 | 9.1 | 10.0 | |
| Si+Ca | Si(31.5±7.5), Ca(20.9±3.7) | Si(34.7±6.2), Ca(23±5) | 12 | 13 | 4.7 | 3.7 | |
| Si+Mg | Si(33.7±4.7), Mg(23±3.9) | Si(35.8±10.7), Mg(26.2±9) | 6 | 12 | 2.4 | 3.4 | |
| Si+Fe | Si(36.3±14), Fe(18.7±4.6) | Si(35.3±7.8), Fe(29.9±4.5) | 6 | 5 | 2.4 | 1.4 | |
| Si+S | Si(24.4), S(17.9) | — | 1 | — | 0.4 | — | |
| 富Ca | Ca质 | Ca(86.8±9.9) | Ca(82.3±9.4) | 13 | 19 | 5.1 | 5.4 |
| Ca+Si | Ca(43.5±10), Si(23±5.3) | Ca(42.5±11.4), Si(23±5.7) | 14 | 24 | 5.5 | 6.9 | |
| Ca+Mg | Ca(36.4±10.8), Mg(33.5±10.7) | Ca(43.6±8.1), Mg(37.2±7.7) | 10 | 5 | 4.0 | 1.4 | |
| Ca+S | Ca(42.2±4.1), S(29.6±5.2) | Ca(53.4±7.6), S(37.6±4.6) | 6 | 5 | 2.4 | 1.4 | |
| Ca+其他 | — | — | 4 | 6 | 1.6 | 1.7 | |
| [1] | 盛涛,潘骏,段玉森,等.上海市典型交通环境空气污染特征[J].中国环境科学,2019, 39(8): 3193-3200. |
| Sheng Tao, Pan Jun, Duan Yu-sen, et al. Study on characteristics of typical traffic environment air pollution in Shanghai[J]. China Environmental Science, 2019, 39(8): 3193-3200. | |
| [2] | 高成康,许庆江,邢玉红,等.冬季低温地区道路移动源大气污染物排放清单[J].东北大学学报(自然科学版),2019, 40(9): 1343-1349. |
| Gao Cheng-kang, Xu Qing-jiang, Xing Yu-hong, et al. Emission inventory of atmospheric pollutants from on-road vehicles in low-temperature areas in winter[J]. Journal of Northeastern University (Natural Science), 2019, 40(9): 1343-1349. | |
| [3] | Azhari A, Halim N D A, Mohtar A A A, et al. Evaluation and prediction of PM10 and PM2.5 from road source emissions in Kuala Lumpur City centre[J]. Sustainability, 2021, 13(10): 5402. |
| [4] | Lin Y C, Li Y C, Amesho K T T, et al. Filterable PM2.5, metallic elements, and organic carbon emissions from the exhausts of diesel vehicles[J]. Aerosol and Air Quality Research, 2020, 20(6): 1319-1328. |
| [5] | Luo Z Y, Wang Y, Lyu Z F, et al. Impacts of vehicle emission on air quality and human health in China[J]. Science of the Total Environment, 2022, 813: 152655. |
| [6] | Wang H K, He X J, Liang X Y, et al. Health benefits of on-road transportation pollution control programs in China[J]. Proceedings of the National Academy of Sciences, 2020, 117(41): 25370-25377. |
| [7] | Tong R P, Liu J F, Wang W, et al. Health effects of PM2.5 emissions from on-road vehicles during weekdays and weekends in Beijing, China[J]. Atmospheric Environment, 2020, 223: 117258. |
| [8] | Wang P, Zhang R H, Sun S D, et al. Aggravated air pollution and health burden due to traffic congestion in urban China[J]. Atmospheric Chemistry and Physics, 2023, 23(5): 2983-2996. |
| [9] | Choma E F, Evans J S, Gómez-Ibáñez J A, et al. Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017[J]. Proceedings of the National Academy of Sciences, 2021, 118(51): e2107402118. |
| [10] | Bastos J, Marques P, Batterman S A, et al. Environmental impacts of commuting modes in Lisbon: a life-cycle assessment addressing particulate matter impacts on health[J]. International Journal of Sustainable Transportation, 2019, 13(9): 652-663. |
| [11] | Zelasky S E, Buonocore J J. The social costs of health-and climate-related on-road vehicle emissions in the continental United States from 2008 to 2017[J]. Environmental Research Letters, 2021, 16(6): 065009. |
| [12] | Doğan G T, Alp K. The effects of technological developments in transportation vehicles on air pollution mitigation of metropolitan cities: a case study of Istanbul [J]. Science of the Total Environment, 2024, 912: 168996. |
| [13] | Wang S, Wang Q Q, Zhu S H, et al. Hourly organic tracers-based source apportionment of PM2.5 before and during the Covid-19 lockdown in suburban Shanghai, China: insights into regional transport influences and response to urban emission reductions[J]. Atmospheric Environment, 2022, 289: 119308. |
| [14] | Huang H, Zhang J J, Hu H, et al. On-road emissions of fine particles and associated chemical components from motor vehicles in Wuhan, China[J]. Environmental Research, 2022, 210: 112900. |
| [15] | Mellado D, Giuliani D, Demetrio P M, et al. Influence of vehicular emissions on the levels of polycyclic aromatic hydrocarbons (PAHs) in urban and industrial areas of La Plata, Argentina[J]. Environmental Monitoring and Assessment, 2022, 194(11): 822. |
| [16] | Zhang Q J, Mao H J, Zhang Y J, et al. Characterization of PM-bound heavy metal at road environment in Tianjin: size distribution and source identification[J]. Atmosphere, 2021, 12(9): 1130. |
| [17] | Jandacka D, Durcanska D, Cibula R. Concentration and inorganic elemental analysis of particulate matter in a road tunnel environment (Žilina, Slovakia): contribution of non-exhaust sources[J]. Frontiers in Environmental Science, 2022, 10: 952577. |
| [18] | Jose J, Srimuruganandam B. Investigation of road dust characteristics and its associated health risks from an urban environment[J]. Environmental Geochemistry and Health, 2020, 42(9): 2819-2840. |
| [19] | 李利霞,牛之建,王红果.扫描电子显微镜在大气颗粒物研究中的应用[J].环境科学与技术,2022, 45(sup1): 329-336. |
| Li Li-xia, Niu Zhi-jian, Wang Hong-guo. Application of scanning electron microscope in the study of atmospheric particulate matter[J]. Environmental Science & Technology, 2022, 45(sup1): 329-336. | |
| [20] | Shao L Y, Li J, Zhang M Y, et al. Morphology, composition and mixing state of individual airborne particles: effects of the 2017 action plan in Beijing, China[J]. Journal of Cleaner Production, 2021, 329: 129748. |
| [21] | Li D X, Yue W S, Gong T C, et al. A comprehensive SERS, SEM and EDX study of individual atmospheric PM2.5 particles in Chengdu, China [J]. Science of the Total Environment, 2023, 883: 163668. |
| [22] | Mahapatra P S, Panda U, Mallik C, et al. Chemical, microstructural, and biological characterization of wintertime PM2.5 during a land campaign study in a coastal city of eastern India[J]. Atmospheric Pollution Research, 2021, 12(9): 101164. |
| [23] | Khobragade P P, Vikram A A. Chemical and morphological characterization of PM2.5 samples collected over an urban industrial region Raipur, Chhattisgarh[J]. Acta Geophysica, 2023, 71(6): 3057-3076. |
| [24] | Ou J P, Zheng L G, Tang Q, et al. Source analysis of heavy metals in atmospheric particulate matter in a mining city[J]. Environmental Geochemistry and Health, 2022, 44(3): 979-991. |
| [25] | Jose J, Srimuruganandam B. Application of micro-morphology in the physical characterization of urban road dust[J]. Particuology, 2021, 54: 146-155. |
| [26] | Al-Shidi H K, Sulaiman H, Alrubkhi S M. Mass concentration and morphological analysis of PM10 and PM2.5 particles in congested roads during day hours in three major cities of Oman[J]. International Journal of Environmental Health Research, 2022, 32(4): 738-751. |
| [27] | 王文华,邵龙义,李泽熙,等.2013年1月京津唐地区霾事件气溶胶单颗粒形貌及硫酸盐化特征[J].岩石矿物学杂志,2015, 34(6): 914-924. |
| Wang Wen-hua, Shao Long-yi, Li Ze-xi, et al. Morphologies and sulfation characteristics of individual aerosol particles in the haze episode over the Beijing—Tianjin—Tangshan area in January 2013[J]. Acta Petrologica et Mineralogica, 2015, 34(6): 914-924. | |
| [28] | Okada K, Qin Y, Kai K J. Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China[J]. Atmospheric Research, 2005, 73(1/2): 45-67. |
| [29] | Longoria-Rodríguez F E, González L T, Mancilla Y, et al. Sequential SEM-EDS, PLM, and MRS microanalysis of individual atmospheric particles: a useful tool for assigning emission sources[J]. Toxics, 2021, 9(2): 37. |
| [30] | Pattammattel A, Leppert V J, Aronstein P, et al. Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods[J]. Atmospheric Environment, 2021, 245: 117988. |
| [31] | Švábenská E, Roupcová P, Schneeweiss O. Spectroscopic methods in the analysis of wear particles[J]. Chemical Papers, 2023, 77(12): 7319-7329. |
| [32] | Zhang Q J, Yin J W, Fang T G, et al. Regenerative braking system effectively reduces the formation of brake wear particles[J]. Journal of Hazardous Materials, 2024, 465: 133350. |
| [1] | Si-wei WU, Xiao-guang ZHOU, Zhen-yu LIU, Guo-dong WANG. Microstructure and Property Prediction of Hot-Rolled Steel: Development and Prospects from Physical Models to Human-Machine Hybrid Intelligence [J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 11-19. |
| [2] | Yu-tao WANG, Jun-wei AN, Chang-sheng QIN, Wei-fan GUO. Research on Localization of Industrial Intelligent Inspection Robots in Cable Tunnel Environment [J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 49-58. |
| [3] | Jian FENG, Bo-wen ZHANG, Ning ZHAO, Hui-jie JIANG. Digital Twin Fault Diagnosis Method of Power Transformer Based on Industrial Intelligence [J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 22-29. |
| [4] | Tian-you CHAI, Rui ZHENG, Yao JIA, Xin-yu HUANG, Yan-jie SONG. Development and Prospects for Software‑Defined Intelligent Control Systems [J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 1-10. |
| [5] | Xi-jing QI, Meng-xing ZHANG, Sheng-jin ZHANG. Evaluation and Optimization of Green Development Efficiency of Construction Industry in China [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 115-123. |
| [6] | Liang LIANG, Cheng-dong WU, Shi-chang LIU. Absolute Position Accuracy Calibration Algorithm for Robots Based on Joint Geometric Error [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 1-7. |
| [7] | Ying WANG, Xiao-wei GU, Xiao-chuan XU, Qing WANG. Hydration Characteristics of Slag-Fly Ash Cementitious System Activated by Lime-Sodium Sulfate Composite [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 87-96. |
| [8] | Ying-fang FAN, Yu-xuan SU, Qiu-chao LI, Hao CHEN. Electrochemical Experimental Study on Passivation Behavior of Steel Bars Embedded in Fly Ash Cement Paste [J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 143-153. |
| [9] | Xiao-peng SHA, De-han XIE, Zhou-peng GUO, Kai SUN. LIDD-Net: Lightweight Industrial Product Defect Detection Method Based on Deep Learning [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 18-26. |
| [10] | Hao-nan ZHANG, Qi YUAN, Chun-miao YUAN, Gang LI. Study on Overpressure and Disaster Distance of Wood Dust Explosion Based on TNT Equivalent Method [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 119-126. |
| [11] | Tao LIU, Xin-tian ZHUANG, Wei-ping ZHANG. Supplier Relations and Corporate Digital Transformation [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1193-1200. |
| [12] | Kai-li XU, Xi-meng CHEN, Bo LIU. Experimental Study on Explosion Characteristics of Oolong Tea Dust [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1057-1064. |
| [13] | Feng DAI, Jing-xian LIU. Analysis of the Aging Behavior of Polyester Filter Media for Steel Companies in a Composite Environment [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 883-889. |
| [14] | Gang LI, Yan-ying MA, Zong-yang LIU, Xiang-li NAN. Ignition Sensitivity of Al/Fe2O3 Thermite Dust [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 415-421. |
| [15] | Gang LI, Lei ZHOU, Xiao-yu ZHANG, Kai ZHANG. Determination Method of Pressure Relief Area for Dust Explosion of Connected Equipment [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 276-281. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||