Random Forest Based Quality Analysis and Prediction Method for Hot-Rolled Strip
JI Ying-jun1, YONG Xiao-yue1, LIU Ying-lin2, LIU Shi-xin1
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Big Data Department, Shanghai Baosight Software Co., Ltd., Shanghai 201203, China.
JI Ying-jun, YONG Xiao-yue, LIU Ying-lin, LIU Shi-xin. Random Forest Based Quality Analysis and Prediction Method for Hot-Rolled Strip[J]. Journal of Northeastern University Natural Science, 2019, 40(1): 11-15.
[1]王永胜,成泽伟,李宏,等.热轧板坯表面缺陷分析[J].钢铁研究学报,2002,14(2):75-76.(Wang Yong-sheng,Cheng Ze-wei,Li Hong,et al.Analysis on surface defect of hot rolled slab[J].Journal of Iron and Steel Research,2002,14(2):75-76.) [2]Ghorai S,Mukherjee A,Gangdaran M,et al.Automatic defect detection on hot-rolled flat steel products[J].IEEE Transactions on Instrumentation and Measurement,2013,63(3):612-621. [3]Sui X Y,Lyu Z M.Prediction of the mechanical properties of hot rolling products by using attribute reduction ELM[J].International Journal of Advanced Manufacturing Technology,2016,85(5/6/7/8):1395-1403. [4]Li W,Yao X L,Yu L,et al.Application of SVM regression in HAGC system[C]//The 27th Chinese Control and Decision Conference(CCDC).Qingdao,2015:3490-3494. [5]Royston P.Multiple imputation of missing value[J].Stata Journal,2004,4(3):227-241. [6]Laurikkala J.Instance-based data reduction for improved identification of difficult small classes[J].Intelligent Data Analysis,2002,6(4):311-322. [7]Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357. [8]Leo B.Classification and regression trees[M].Monterey:Cole Publishing,1984. [9]Quinlan J R.C4.5:programs for machine learning[M].San Francisco:Morgan Kaufmann Publishers,1994. [10]雍凯.随机森林的特征选择和模型优化算法研究[D].哈尔滨:哈尔滨工业大学,2008.(Yong Kai.Research on feature selection and model optimization of random forest[D].Harbin:Harbin Institute of Technology,2008.) [11]Peng H C,Long F,Ding C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. [12]Kohavi R.A study of cross-validation and bootstrap for accuracy estimation and model selection[C]// Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.Montreal,1995:1137-1143.