Journal of Northeastern University(Natural Science) ›› 2021, Vol. 42 ›› Issue (9): 1238-1245.DOI: 10.12068/j.issn.1005-3026.2021.09.004
• Information & Control • Previous Articles Next Articles
YANG Ai-ping, SONG Shang-yang, CHENG Si-meng
Revised:
2020-12-31
Accepted:
2020-12-31
Published:
2021-09-16
Contact:
YANG Ai-ping
About author:
-
Supported by:
CLC Number:
YANG Ai-ping, SONG Shang-yang, CHENG Si-meng. Lightweight Adaptive Feature Selection Network for Object Detection[J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1238-1245.
[1]Zitnick C L,Dollár P.Edge boxes:locating object proposals from edges[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer-Verlag,2014:391-405. [2]Uijlings J R R,Van de Sande K E A,Gevers T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [3]Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [4]Joachims T.A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization[C]// Proceedings of the International Conference on Machine Learning.San Francisco,1997:143-151. [5]Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.San Diego,2005:886-893. [6]Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139. [7]Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [8]Redmon J,Divvala S,Girshick R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:779-788. [9]Liu W,Anguelov D,Erhan D,et al.SSD:single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer-Verlag,2016:21-37. [10]Zhang S,Wen L,Bian X,et al.Single-shot refinement neural network for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:4203-4212. [11]Zhu C,He Y,Savvides M.Feature selective anchor-free module for single-shot object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2019:840-849. [12]Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,2014:580-587. [13]Girshick R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago,2015:1440-1448. [14]Ren S,He K,Girshick R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the Neural Information Processing Systems.Montréal,2015:91-99. [15]Dai J,Li Y,He K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the Neural Information Processing Systems.Barcelona,2016:379-387. [16]He K M,Gkioxari G,Dollár P,et al.Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision.Venice,2017:2980-2988. [17]Lin T Y,Dollár P,Girshick R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:936-944. [18]Pang J,Chen K,Shi J,et al.Libra R-CNN:towards balanced learning for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2019:821-830. [19]Sandler M,Howard A,Zhu M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:4510-4520. [20]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:7132-7141. [21]Wang X,Cai Z,Gao D,et al.Towards universal object detection by domain attention[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2019:7281-7290. [22]Everingham M,Van Gool L,Williams C K I,et al.The pascal visual object classes(VOC)challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [23]Lin T Y,Maire M,Belongie S,et al.Microsoft COCO:common objects in context[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer-Verlag,2014:740-755. [24]Redmon J,Farhadi A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:6517-6525. [25]Kong T,Sun F,Yao A,et al.RON:reverse connection with objectness prior networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:5244-5252. [26]Fu C Y,Liu W,Ranga A,et al.Dssd:deconvolutional single shot detector[J].arXiv Preprint arXiv,2017:1701.06659. [27]Redmon J,Farhadi A.Yolov3:an incremental improvement[J].arXiv Preprint arXiv,2018:1804.02767. [28]Bell S,Lawrence Z C,Bala K,et al.Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:2874-2883. [29]Shrivastava A,Gupta A,Girshick R.Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:761-769.(上接第1225页) [12]Torelli F,Vaccaro A.A generalized computing paradigm based on artificial dynamic models for mathematical programming[J].Soft Computing,2014,18(8):1561-1573. [13]Torelli F,Vaccaro A.A second order dynamic power flow model[J].Electric Power Systems Research,2015,126(1):12-20. [14]Liang X,Mosalam K M.Lyapunov-based nonlinear solution algorithm for structural analysis[J].Journal of Engineering Mechanics,2018,144(9):12-21. [15]Chellaboina V,Leonessa A,Haddad W M.Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems[J].Systems & Control Letters,1999,38(45):289-295. [16]Xie N,Bompard E,Napoli R,et al.Widely convergent method for finding solutions of simultaneous nonlinear equations[J].Electric Power Systems Research,2012,83(1):9-18. [17]Xie N,Torelli F,Bompard E,et al.Dynamic computing paradigm for comprehensive power flow analysis[J].IET Generation Transmission & Distribution,2013,7(8):832-842. [18]Fonseca C M,Fleming P J.Multiobjective optimization and multiple constraint handling with evolutionary algorithms.Part I: unified formulation[J].IEEE Transactions on Systems Man and Cybernetics.Part A-Systems and Humans,1998,28(1):26-37. |
[1] | PANG Yan-wei, SU Chang, LONG Tao. Adaptive Multi-scale Cost Volume Construction and Aggregation for Stereo Matching [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 457-468. |
[2] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[3] | LI Hai-yan, XIONG Li-chang, GUO Lei, LI Hai-jiang. Two-Stage Inpainting Algorithm Based on U-net Edge Generation and Hypergraphs Convolution [J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 331-339. |
[4] | YANG Dan, LIU Guo-ru, REN Meng-cheng, PEI Hong-yang. Retinal Blood Vessel Segmentation Method Based on Multi-scale Convolution Kernel U-Net Model [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 7-14. |
[5] | HAN Dong-hong, ZHANG Hong-liang, ZHU Shuai-wei, QI Xiao-long. Sentiment Community Detection Algorithm for Sina Weibo [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 21-31. |
[6] | YUAN Pei-xin, CHEN Ding-fu. Compression Algorithm of Dual X-ray Security Inspection Images with High Dynamic Range [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 96-101. |
[7] | WEI Ying, XU Chu-qiao, DIAO Zhao-fu, LI Bo-qun. A Multi-target Pedestrian Tracking Algorithm Based on Generated Adversarial Network [J]. Journal of Northeastern University(Natural Science), 2020, 41(12): 1673-1680. |
[8] | LI Ji, XU An-jun. Simulation-based Solution for Multi-crane Dynamic Scheduling in Steelmaking Shop [J]. Journal of Northeastern University Natural Science, 2020, 41(12): 1699-1707. |
[9] | LI Zhan-shan, LYU Ai-na. A Feature Selection Method Based on New Redundancy Measurement [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1550-1556. |
[10] | WANG Xin, WANG Cui-rong, WANG Cong, YUAN Ying. Dual-channel Multi-perception Convolutional Network for Image Super-Resolution [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1564-1570. |
[11] | ZHANG Chun-lei, DAI Li, LIU Yu, LI He. Patient Registration for Surgical Navigation System Based on Three-Point Method and ICP Algorithm [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1584-1590. |
[12] | CHEN Jian, HE Tao, WEN Ying-you, MA Lin-tao. Entity Recognition Method for Judicial Documents Based on BERT Model [J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1382-1387. |
[13] | ZHANG Tian, TIAN Yong, WANG Zi, WANG Zhao-dong. Adaptive Threshold Image Segmentation Based on Definition Evaluation [J]. Journal of Northeastern University Natural Science, 2020, 41(9): 1231-1238. |
[14] | ZHANG Li-jie, LIU Jian-chang, TAN Shu-bin. Multi-objective Planning of Personnel Evacuation Route in Complex Building Fire [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 761-766. |
[15] | ZHAO Hai, ZHOU Bing-ling, ZHU Hong-bo, DOU Sheng-chang. Fast Segmentation Algorithm of 3D Lung Parenchyma Based on Continuous Max-Flow [J]. Journal of Northeastern University Natural Science, 2020, 41(4): 470-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||