ZHANG Tian, ZHANG Zi-hao, TIAN Yong, WANG Zhao-dong. Research and Application of Deep Learning Method for Plate Ultra Fast Cooling[J]. Journal of Northeastern University Natural Science, 2019, 40(5): 635-640.
[1]田勇,王丙兴,袁国,等.基于超快冷技术的新一代中厚板轧后冷却工艺[J].中国冶金,2013,23(4):17-20.(Tian Yong,Wang Bing-xing,Yuan Gong,et al.New generation TMCP for plate mill based on ultra-fast cooling technology [J].China Metallurgy,2013,23(4):17-20.) [2]李栋.基于神经网络的层流冷却控制模型研究[D].沈阳,东北大学,2010.(Li Dong.Study of control model of laminar cooling based on neural networks[D].Shenyang:Northeastern University,2010.) [3]Xie H B,Liu X H,Wang G D,et al.Optimization and model of laminar cooling control system for hot strip mills [J].Journal of Iron and Steel Research,2006,13(1):18-22. [4]Gong D Y,Xu J Z,Peng L G,et al.Self-learning and its application to laminar cooling model of hot rolled strip[J].Journal of Iron and Steel Research,2007,14(4):11-14. [5]Burba F,Ferraty F,Vieu P.k-nearest neighbour method in functional nonparametric regression[J].Journal of Nonparametric Statistics, 2009, 21(4):453-469. [6]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,31(7):1921-1930.(Liu Jian-wei,Liu Yuan,Luo Xiong-lin.Research progress of deep learning[J].Application Research of Computers,2014,31(7):1921-1930.) [7]余滨,李绍滋,徐素霞,等.深度学习:开启大数据时代的钥匙[J].工程研究,2014(3):233-243.(Yu Bin,Li Shao-zi,Xu Su-xia,et al.Deep learning:the key of new world[J].Journal of Engineering Studies,2014(3):233-243.) [8]Ebert T,Banfer O,Nelles O.Multilayer perception network with modified Sigmoid activation functions[C]// LNCS6319:Artificial Intelligence and Computational Intelligence.Berlin:Springer,2010:414-421. [9]Kailik B,Olgac A V.Performance analysis of various activation functions in generalized MLP architectures of neural networks[J].International Journal of Artificial Intelligence and Expert Systems,2010,1(4):111-122. [10]Bartlett P L,Hazan E,Rakhlin A.Adaptive online gradient descent[C]//Advances in Neural Information Processing Systems 20.Vancouver,2007:1-15. [11]Srivastava N,Hinton G,Krizhevsky a,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958. [12]Mendenhall M J.Improving quantitative structure-activity relationship models using artificial neural networks trained with Dropout[J].Journal of Computer-Aided Molecular Design,2016,30(2):177-189.