LI Xiong-fei, ZHOU Jin-nan, ZHANG Xiao-li. Research on Advertising Conversion Rate Based on Hybrid Model[J]. Journal of Northeastern University Natural Science, 2019, 40(7): 942-947.
[1]董书超.基于逻辑回归模型的广告点击率预估系统的设计与实现[D].哈尔滨:哈尔滨工业大学,2016.(Dong Shu-chao.Design and implementation of click through rating system based on logistic regression model[D].Harbin:Harbin Institute of Technology,2016.) [2]Juan Y,Zhuang Y,Chin W S,et al.Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.Boston,2016:43-50. [3]Juan Y,Lefortier D,Chapelle O.Field-aware factorization machines in a real-world online advertising system[C]//Proceedings of the 26th International Conference on World Wide Web Companion.Perth,2017:680-688. [4]Ling X L,Deng W W,Gu C,et al.Model ensemble for click prediction in bing search Ads[C]//Proceedings of the 26th International Conference on World Wide Web Companion.Perth,2017:689-698. [5]Pan J,Xu J,Ruiz A L,et al.Field-weighted factorization machines for click-through rate prediction in display advertising[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web.Lyon,2018:1349-1357. [6]Cheng H T,Koc L,Harmsen J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.Boston,2016:7-10. [7]Zhang W,Du T,Wang J.Deep learning over multi-field categorical data[C]//European Conference on Information Retrieval.Padua,2016:45-57. [8]Ke G,Meng Q,Finley T,et al.LightGBM:a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems.Barcelona,2017:3149-3157. [9]Chen T,Guestrin C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,2016:785-794. [10]Raskutti G,Wainwright M J,Yu B.Early stopping and non-parametric regression:an optimal data-dependent stopping rule[J].Journal of Machine Learning Research,2014,15(1):335-366.