[1]王文杰.高性能先进舰船用合金材料的应用现状及展望[J].材料导报,2013(7):98-105.(Wang Wen-jie.The application status and perspective of alloys for high performance and advanced naval vessels[J].Materials Review,2013(7):98-105.) [2]杨建明,张新宇,刘朝骏.高强度钢在潜艇应用中的若干重要问题综述[J].中国舰船研究,2016,11(1):27-35.(Yang Jian-ming,Zhang Xin-yu,Liu Chao-jun.Overview of vital matters on high strength steel utilization in submarines[J].Chinese Journal of Ship Research,2016,11(1):27-35.) [3]Sampath K.An understanding of HSLA-65 plate steels[J].Journal of Materials Engineering and Performance,2006,15(1):32-40. [4]Czyryca E J,Link R E,Wong R J,et al.Development and certification of HSLA-100 steel for naval ship construction[J].Naval Engineers Journal,2010,102(3):63-82. [5]Kapoor M,Isheim D,Vaynman S,et al.Effects of increased alloying element content on NiAl-type precipitate formation,loading rate sensitivity,and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels[J].Acta Materialia,2016,104:166-171. [6]Hou W,Liu Q D,Gu J F.Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel[J].Materials Science & Engineering A,2020,780(A):139186.1-139186.9. [7]Hou W,Liu Q D,Gu J F.Improved impact toughness by multi-step heat treatment in a 1400MPa low carbon precipitation-strengthened steel[J].Materials Science & Engineering A,2020,797(A):140077.1-140077.11. [8]Semyon V,Dieter L,et al.High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates[J].Metallurgical & Materials Transactions A,2008,39(2):363-373. [9]Zhu J H,Pike L M,Liu C T,et al.Point defects in binary Laves phase alloys[J].Acta Materialia,1999,47(7):2003-2018. [10]Liu C T,Zhu J H,Brady M P,et al.Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J].Intermetallics,2000,8(9/10/11):1119-1129. [11]Furuya Y,Matsuoka S.Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure[J].Metallurgical & Materials Transactions A,2004,35(6):1715-1723. [12]Hu Y,Chen W,Wan C,et al.Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension[J].Metallurgical and Materials Transactions B,2018,49(2):569-580. [13]Fumya Y,Abe T,Matsuoka S.Inclusion-controlled fatigue properties of 1800 MPA-class spring steels[J].Metallurgical and Materials Transactions A,2004,35(12):3737-3744. [14]Li X,Jiang Z,Geng X,et al.Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition[J].ISIJ international,2019,59(9):1552-1561. [15]Wang X J,Sha G,Shen Q,et al.Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel[J].Materials Science and Engineering A,2015,627:340-347. [16]Das S,Ghosh A,Chatterjee S,et al.The effect of cooling rate on structure and properties of a HSLA forging[J].Scripta Materialia,2003,48(1):51-57. [17]Kapoor M,Isheim D,Vaynman S,et al.Effects of increased alloying element content on NiAl-type precipitate formation,loading rate sensitivity,and ductility of Cu and NiAl-precipitation-strengthened ferritic steels[J].Acta Materialia,2016,104:166-171.