Application of Improved Whale Optimization Algorithm in Robot Path Planning
ZHAO Jun-tao1, LUO Xiao-chuan1, LIU Jun-mi2
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Electrical and Control Engineering, Henan University of Urban Construction, Pingdingshan 467000, China.
ZHAO Jun-tao, LUO Xiao-chuan, LIU Jun-mi. Application of Improved Whale Optimization Algorithm in Robot Path Planning[J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1065-1071.
[1]Zhang H Y,Lin W M,Chen A X.Path planning for the mobile robot:a review[J].Symmetry,2018,10(10):450. [2]Chen Z,Wu H,Chen Y,et al.Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm[J].Applied Soft Computing,2022,116:108192. [3]Mirjalili S,Lewis A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67. [4]Zan J.Research on robot path perception and optimization technology based on whale optimization algorithm[J].Journal of Computational and Cognitive Engineering,2022,1(4):201-208. [5]Raiesdana S.A hybrid method for industrial robot navigation[J].Journal of Optimization in Industrial Engineering,2021,14(1):133-148. [6]蔡雨岑,杜鹏桢.基于平衡鲸鱼优化算法的无人车路径规划[J].控制与决策,2021,36(11):2647-2655.(Cai Yu-cen,Du Peng-zhen.Path planning of unmanned ground vehicle based on balanced whale optimization algorithm[J].Control and Decision,2021,36(11):2647-2655.) [7]杨博,李昌华,李智杰,等.改进鲸鱼算法及其在路径规划的应用[J].计算机测量与控制,2021,29(2):187-193.(Yang Bo,Li Chang-hua,Li Zhi-jie,et al.Improved whale optimization algorithm and application in path planning[J].Computer Measurement & Control,2021,29(2):187-193.) [8]Hou W,Xiong Z,Wang C,et al.Enhanced ant colony algorithm with communication mechanism for mobile robot path planning[J].Robotics and Autonomous Systems,2022,148:103949. [9]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of ICNN95-International Conference on Neural Networks.Perth,1995:1942-1948. [10]Laskar N M,Guha K,Chatterjee I,et al.HWPSO:a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems[J].Applied Intelligence,2019,49(1):265-291. [11]Cheng X,Li J,Zheng C,et al.An improved PSO-GWO algorithm with chaos and adaptive inertial weight for robot path planning[J].Frontiers in Neurorobotics,2021,15:770361. [12]Dogan L,Yüzge U.Robot path planning using gray wolf optimizer[C]//Proceedings of the International Conference on Advanced Technologies,Computer Engineering and Science(ICATCES’18).Safranbolu,2018:11-13. [13]孔芝,杨青峰,赵杰,等.基于自适应调整权重和搜索策略的鲸鱼优化算法[J].东北大学学报(自然科学版),2020,41(1):35-43.(Kong Zhi,Yang Qing-feng,Zhao Jie,et al.Adaptive adjustment of weights and search strategies-based whale optimization algorithm[J].Journal of Northeastern University(Nature Science),2020,41(1):35-43.) [14]Brand M,Masuda M,Wehner N,et al.Ant colony optimization algorithm for robot path planning[C]//2010 International Conference on Computer Design and Applications.Qinhuangdao,2010:436-440. [15]Zhang Z,He R,Yang K.A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm[J].Advances in Manufacturing,2022,10(1):114-130. [16]Liu M,Yao X,Li Y.Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems[J].Applied Soft Computing,2020,87:105954. [17]赵志刚,林玉娇,尹兆远.基于自适应惯性权重的均值粒子群优化算法[J].计算机工程与科学,2016,38(3):501-506.(Zhao Zhi-gang,Lin Yu-jiao,Yin Zhao-yuan.A mean particle swarm optimization algorithm based on adaptive inertia weight[J].Computer Engineering & Science,2016,38(3):501-506.) [18]Pattnaik S K,Mishra D,Panda S.A comparative study of meta-heuristics for local path planning of a mobile robot[J].Engineering Optimization,2022,54(1):134-152.