Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (2): 170-178.DOI: 10.12068/j.issn.1005-3026.2024.02.003
• Materials & Metallurgy • Previous Articles
Wen-bo YAO, Chen LIU, Shuo SHANG, Chang-sheng LIU
Received:
2023-01-15
Online:
2024-02-15
Published:
2024-05-14
CLC Number:
Wen-bo YAO, Chen LIU, Shuo SHANG, Chang-sheng LIU. Microstructure and Properties of Laser Cladding Fe‐Al Alloy at Different Scanning Speeds[J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 170-178.
C | Si | Mn | Cr | Mo | P | S | Al | B | Fe |
---|---|---|---|---|---|---|---|---|---|
0.20 | 0.50 | 2.0 | 1.0 | 1.0 | 0.015 | 0.005 | 0.015 | 0.005 | 余量 |
Table 1 Chemical composition of Q960E high‐strength steel(mass fraction)
C | Si | Mn | Cr | Mo | P | S | Al | B | Fe |
---|---|---|---|---|---|---|---|---|---|
0.20 | 0.50 | 2.0 | 1.0 | 1.0 | 0.015 | 0.005 | 0.015 | 0.005 | 余量 |
Cu | Fe | Mg | Mn | Si | Ti | Zn | Cr | Al |
---|---|---|---|---|---|---|---|---|
0.25 | 0.7 | 0.9 | 0.15 | 0.6 | 0.15 | 0.25 | 0.35 | 余量 |
Table 2 Chemical composition of 6061 aluminum alloy powder(mass fraction)
Cu | Fe | Mg | Mn | Si | Ti | Zn | Cr | Al |
---|---|---|---|---|---|---|---|---|
0.25 | 0.7 | 0.9 | 0.15 | 0.6 | 0.15 | 0.25 | 0.35 | 余量 |
C | P | S | Si | Mn | Fe |
---|---|---|---|---|---|
0.012 | 0.0015 | 0.011 | 0.005 | 0.001 | 余量 |
Table 3 Chemical composition of pure iron powder (mass fraction)
C | P | S | Si | Mn | Fe |
---|---|---|---|---|---|
0.012 | 0.0015 | 0.011 | 0.005 | 0.001 | 余量 |
Fig.3 Surface optical morphology and cross-sectional metallographic microstructure of Fe-Al alloy cladding layer prepared at different scanning speeds
元素 | a1 | a2 | a3 | b1 | b2 | b3 | c1 | c2 | c3 |
---|---|---|---|---|---|---|---|---|---|
Al | 14.64 | 10.48 | 11.16 | 14.84 | 11.70 | 13.34 | 13.20 | 9.20 | 8.08 |
Fe | 85.36 | 89.52 | 88.84 | 85.16 | 88.30 | 86.66 | 86.80 | 90.80 | 91.92 |
Table 4 Point scan of cross section from surface to substrate of Fe Al alloy cladding layer prepared at different scanning speeds(atom fraction)
元素 | a1 | a2 | a3 | b1 | b2 | b3 | c1 | c2 | c3 |
---|---|---|---|---|---|---|---|---|---|
Al | 14.64 | 10.48 | 11.16 | 14.84 | 11.70 | 13.34 | 13.20 | 9.20 | 8.08 |
Fe | 85.36 | 89.52 | 88.84 | 85.16 | 88.30 | 86.66 | 86.80 | 90.80 | 91.92 |
扫描速度/(mm·s-1) | 自腐蚀电位/V | 自腐蚀电流密度 |
---|---|---|
A·cm-2 | ||
50 | -0.937 | 2.158×10-6 |
75 | -0.887 | 1.119×10-6 |
100 | -0.939 | 2.104×10-6 |
Table 5 Corrosion potential and corrosion current of the molten cladding layer at different scanning speeds
扫描速度/(mm·s-1) | 自腐蚀电位/V | 自腐蚀电流密度 |
---|---|---|
A·cm-2 | ||
50 | -0.937 | 2.158×10-6 |
75 | -0.887 | 1.119×10-6 |
100 | -0.939 | 2.104×10-6 |
扫描速度/(mm·s-1) | Rs/(Ω·cm2) | CCPE1/(μF·cm-2) | n1 | CCPE2/(μF·cm-2) | n2 | Rc/(Ω·cm2) | Rct/(Ω·cm2) |
---|---|---|---|---|---|---|---|
50 | 6.271 | 3.527 2×10-4 | 0.814 94 | 48.939×10-4 | 0.813 93 | 1 556 | 383.9 |
75 | 4.586 | 6.551 6×10-4 | 0.765 18 | 10.511×10-4 | 0.500 51 | 876 | 1 022 |
100 | 5.629 | 3.797 9×10-4 | 0.812 86 | 15.81×10-4 | 0.597 15 | 1 009 | 600.1 |
Table 6 EIS fitting results at different scanning speeds
扫描速度/(mm·s-1) | Rs/(Ω·cm2) | CCPE1/(μF·cm-2) | n1 | CCPE2/(μF·cm-2) | n2 | Rc/(Ω·cm2) | Rct/(Ω·cm2) |
---|---|---|---|---|---|---|---|
50 | 6.271 | 3.527 2×10-4 | 0.814 94 | 48.939×10-4 | 0.813 93 | 1 556 | 383.9 |
75 | 4.586 | 6.551 6×10-4 | 0.765 18 | 10.511×10-4 | 0.500 51 | 876 | 1 022 |
100 | 5.629 | 3.797 9×10-4 | 0.812 86 | 15.81×10-4 | 0.597 15 | 1 009 | 600.1 |
1 | Zhu X X, Shen Y F, Ge Y P,et al.Effect of hot dip plating process parameters on microstructure and properties of zinc‐10% aluminum‐mischmetal alloy coated for bridge cable steel wire[J].Metals,2022,12(8):1257. |
2 | Zhao J, Gao Q W, Wang H Q,et al.Microstructure and mechanical properties of Co‐based alloy coatings fabricated by laser cladding and plasma arc spray welding[J].Journal of Alloys and Compounds,2019,785:846-854. |
3 | 顾剑锋,李沛,钟庆东.物理气相沉积在耐腐蚀涂层中的应用[J].材料导报,2016,30(9):75-80. |
Gu Jian‑feng, Li Pei, Zhong Qing‑dong.Application of physical vapor deposition in corrosion resistant coatings[J].Materials Reports,2016,30(9):75-80. | |
4 | Wang Q Y, Zhang Y F, Bai S L,et al.Microstructures,mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding[J].Journal of alloys and compounds,2013,553:253-258. |
5 | Liu J, Liu H, Tian X H,et al.Microstructural evolution and corrosion properties of Ni‐based alloy coatings fabricated by multi‐layer laser cladding on cast iron[J].Journal of Alloys and Compounds,2020,822:153708. |
6 | 任超,李铸国,疏达,等.17-4PH 不锈钢表面激光熔覆 Stellite6 涂层组织及耐水蚀性能[J].中国激光,2017,44(4):107-114. |
Ren Chao, Li Zhu‑guo, Shu Da,et al.Microstructure and water erosion resistance property of Stellite6 coating by laser cladding on 17-4PH stainless steel surface[J].Chinese Journal of Lasers,2017,44(4):107-114. | |
7 | Li Y Z, Shi Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high‑entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134:106632. |
8 | 高帅龙,孙德福,谷臻,等.机械合金化粉末激光熔化沉积制备Fe-Cr-Mn-N奥氏体不锈钢厚熔覆涂层的性能[J].稀有金属材料与工程,2022,51(1):321-326. |
Gao Shuai‐long, Sun De‐fu, Gu Zhen,et al.Properties of Fe-Cr-Mn-N austenitic stainless steel thick cladding coating prepared by laser melting deposition using mechanical alloyed powders[J].Rare Metal Materials and Engineering,2022,51(1):321-326. | |
9 | Liu J, Liu H, Chen P J,et al.Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high‐entropy alloy coatings fabricated by laser cladding[J].Surface and Coatings Technology,2019,361:63-74. |
10 | Rao V S.A review of the electrochemical corrosion behaviour of iron aluminides[J].Electrochimica Acta,2004,49(26):4533-4542. |
11 | Totemeier T C, Wright R N, Swank W D.FeAl and Mo-Si-B intermetallic coatings prepared by thermal spraying[J].Intermetallics,2004,12(12):1335-1344. |
12 | Luo X X, Cao J, Meng G H,et al.Systematical investigation on the microstructures and tribological properties of Fe-Al laser cladding coatings[J].Applied Surface Science,2020,516:146121. |
13 | Luo X X, Yao Z J, Zhang P Z,et al.Laser cladding Fe-Al-Cr coating with enhanced mechanical properties[J].Journal of Wuhan University of Technology:Materials Science Edition,2019,34(5):1197-1204. |
14 | Nunobiki M, Harada Y, Okuda K.Production of Fe‐Al alloy coat on steel block by scanning laser beam[J].Advanced Materials Research,2014,1017:794-799. |
15 | Sharma G, Awasthi R, Chandra K.A facile route to produce Fe-Al intermetallic coatings by laser surface alloying[J].Intermetallics,2010,18(11):2124-2127. |
16 | 徐瀚宗,葛鸿浩,王杰锋,等.工艺参数对316L不锈钢激光熔覆层中Cr元素分布的影响[J].中国激光,2020,47(12):94-103. |
Xu Han‐zong, Ge Hong‐hao, Wang Jie‐feng,et al.Effects of process parameters upon chromium element distribution in laser‐cladded 316L stainless steel[J].Chinese Journal of Lasers,2020,47(12):94-103. | |
17 | Qiao Y X, Huang J, Huang D,et al.Effects of laser scanning speed on microstructure,microhardness,and corrosion behavior of laser cladding Ni45 coatings[J].Journal of Chemistry,2020,2020:1-11. |
18 | Li L Q, Shen F M, Zhou Y D,et al.Comparative study of stainless steel AISI 431 coatings prepared by extreme‐high‐speed and conventional laser cladding[J].Journal of Laser Applications,2019,31(4):042009. |
19 | Figueredo E W A, Apolinario L H R, Santos M V,et al.Influence of laser beam power and scanning speed on the macrostructural characteristics of AISI 316L and AISI 431 stainless steel depositions produced by laser cladding process[J].Journal of Materials Engineering and Performance,2021,30(5):3298-3312. |
20 | Xu X, Lu H F, Su Y Y,et al.Comparing corrosion behavior of additively manufactured Cr‐rich stainless steel coating between conventional and extreme high‐speed laser metal deposition[J].Corrosion Science,2022,195:109976. |
21 | Gaberšček M, Pejovnik S.Impedance spectroscopy as a technique for studying the spontaneous passivation of metals in electrolytes[J].Electrochimica Acta,1996,41(7/8):1137-1142. |
22 | Yang D C, Kan X F, Gao P F,et al.Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel[J].Applied Physics A,2022,128(1):1-9. |
23 | Parakh A, Vaidya M, Kumar N,et al.Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy[J].Journal of Alloys and Compounds,2021,863:158056. |
24 | Aghuy A A, Zakeri M, Moayed M H,et al.Effect of grain size on pitting corrosion of 304L austenitic stainless steel[J].Corrosion Science,2015,94:368-376. |
25 | Wang P J, Ma L W, Cheng X Q,et al.Influence of grain refinement on the corrosion behavior of metallic materials:a review[J].International Journal of Minerals Metallurgy and Materials,2021,28(7):1112-1126. |
[1] | LIU Jun-ru, ZHANG Guo-hua, ZHOU Guo-zhi. Effect of w(Fe)/w(Ni) Ratio on Mo2FeB2 Based Cermet [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1269-1278. |
[2] | ZHANG Ya-jing, WANG Jin-peng, CHEN Xin, WU Hang-yu. Preparation and Properties of Biodegradable Zn-3Cu-xMn Alloys [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1104-1110. |
[3] | WANG Ming-kun, LUO Zong-an, ZENG Zhou-yu, XIE Guang-ming. Effect of Heat Treatment on Microstructure and Mechanical Properties of Super Austenitic Stainless Steel Clad Plate [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 777-783. |
[4] | WANG Hai-tao, LI Jia-dong, DENG Xiang-tao, WANG Zhao-dong. Effect of Solution Temperature on Microstructure and Mechanical Properties of Fe-20Mn-9Al-1.2C Low-Density Steel [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 609-616. |
[5] | WANG Zhen, JIANG Mao-fa, LIU Cheng-jun, MIN Yi. Microstructure Analysis of Mold Flux of Cao-SiO2-Al2O3-Na2O-MgO System for Ingot Casting [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 517-523. |
[6] | WEN Xue-long, WANG Cheng-bao, LIU Wen-bo, REN Hai-yang. Experimental Study on the Microstructure of FeCoNiCr High-Entropy Alloys by Selective Laser Melting [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 536-543. |
[7] | JIA Peng, ZHU Peng-cheng, LI Bo, MAO Song-ze. Experimental Study on Wave Characteristics and Acoustic Emission Characteristics of Thermal Damaged Marble [J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 279-288. |
[8] | LI Hui-jie, WEI Hao, XU Xiao-ning, YE Qi-bin. Microstructure Characteristics and Strengthening Mechanism of Ultrafine-Grain Low-Carbon Steel Prepared by Gradient-Structure Intermediate Billet [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1578-1584. |
[9] | ZHI Wei-jun , YAO Zan, JIANG Zhou-hua. Microstructure Evolution of High Carbon Galvanized Steel Wire and Effect on Torsional Property [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 49-54. |
[10] | DONG Yan-wu, PENG Fei, TIAN Jia-long, JIANG Zhou-hua. Effect of Aging Treatment on Microstructure and Mechanical Properties of 10Ni10Mn2CuAl Steel [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 646-651. |
[11] | ZHI Wei-jun , YAO Zan, JIANG Zhou-hua. Research on Fine Characterization of Microstructure Difference of High Carbon Galvanized Steel Wire [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 501-508. |
[12] | SONG Hong-yu, LIU Hai-tao, WANG Guo-dong. Hot Rolling Twinning Behavior of Strip Casting Grain-Oriented Silicon Steel [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 182-187. |
[13] | ZHAO Yu-hui , GAO Meng-qiu , ZHAO Ji-bin , HE Chen. Microstructure and Properties of WC Particles Reinforced 316L Stainless Steel Composites Prepared by Additive and Subtractive Manufacturing [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 197-205. |
[14] | WANG Yin, LI Yong, QIAN Xiao-ming, ZHANG Bo-si. Effect of the Cooling Rate of Vacuum Centrifugal Casting on Microstructure and Mechanical Properties of 7055 Aluminum Alloy [J]. Journal of Northeastern University(Natural Science), 2022, 43(12): 1769-1776. |
[15] | YAO Yun-long, XIU Shi-chao, SUN Cong, HONG Yuan. Dynamic Recrystallization Behavior of Grinding Surface Based on 40Cr High Temperature Dynamic Mechanical Properties [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1120-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||