1 |
Zhang C L, Feng P F, Zhang J F.Ultrasonic vibration‑assisted scratch‑induced characteristics of C‑plane sapphire with a spherical indenter[J].International Journal of Machine Tools and Manufacture,2013,64:38-48.
|
2 |
Cao J G, Wu Y B, Lu D,et al.Material removal behavior in ultrasonic‑assisted scratching of SiC ceramics with a single diamond tool[J].International Journal of Machine Tools and Manufacture,2014,79:49-61.
|
3 |
Feng P F, Liang G Q, Zhang J F.Ultrasonic vibration‑assisted scratch characteristics of silicon carbide‑reinforced aluminum matrix composites[J].Ceramics International,2014,40(7):10817-10823.
|
4 |
Zheng F F, Kang R K, Dong Z G,et al.A theoretical and experimental investigation on ultrasonic assisted grinding from the single‑grain aspect[J].International Journal of Mechanical Sciences,2018,148:667-675.
|
5 |
Wang H, Ning F D, Li Y C,et al.Scratching‑induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP[J].Ultrasonics,2019,97:19-28.
|
6 |
Li Z, Yuan S M, Ma J,et al.Study on the surface formation mechanism in scratching test with different ultrasonic vibration forms[J].Journal of Materials Processing Technology,2021,294:117108.
|
7 |
Zhang G, Wu G, Zeng Y,et al.Discrete element simulation of the ultrasonic‑assisted scratching process of Al2O3 ceramic under compressive pre‑stress[J].Ceramics International,2020,46(18):29090-29100.
|
8 |
Qiao G C, Yi S C, Zheng W,et al.Material removal behavior and crack‑inhibiting effect in ultrasonic vibration‑assisted scratching of silicon nitride ceramics[J].Ceramics International,2022,48(3):4341-4351.
|
9 |
Sun G Y, Shi F, Zhao Q L,et al.Material removal behaviour in axial ultrasonic assisted scratching of Zerodur and ULE with a Vickers indenter[J].Ceramics International,2020,46(10):14613-14624.
|
10 |
Li Q L, Yuan S M, Gao X X,et al.Surface and subsurface formation mechanism of SiCp/Al composites under ultrasonic scratching[J].Ceramics International,2023,49(1):817-833.
|
11 |
Bifano T G, Dow T A, Scattergood R O.Ductile‑regime grinding:a new technology for machining brittle materials[J].Journal of Manufacturing Science & Engineering,1991,113(2):184-189.
|
12 |
Hwang T W, Evans C J, Malkin S.Size effect for specific energy in grinding of silicon nitride[J].Wear,1999,225:862-867.
|
13 |
任敬心.磨削原理[M].北京:电子工业出版社,2011:32-35.
|
|
Ren Jing‑xin.Grinding principle[M].Beijing:Publishing House of Electronics Industry,2011:32-35.
|
14 |
肖敏.轴向超声振动辅助磨削机理的研究[D].沈阳:东北大学,2012.
|
|
Xiao Min.Study on axial ultrasonic vibration‑assisted grinding mechanism[D].Shenyang:Northeastern University,2012.
|
15 |
Yang Z Y, Zou P, Zhou L,et al.Research on modeling of grinding force in ultrasonic vibration‑assisted grinding of 304 stainless steel materials[J].The International Journal of Advanced Manufacturing Technology,2022,120(5):3201-3223.
|
16 |
Choudhary A, Paul S.Surface generation in high‑speed grinding of brittle and tough ceramics[J].Ceramics International,2021,47(21):30546-30562.
|
17 |
Dai C W, Yu T Y, Ding W F,et al.Single diamond grain cutting‑edges morphology effect on grinding mechanism of Inconel 718[J].Precision Engineering,2019,55:119-126.
|