Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (7): 1002-1010.DOI: 10.12068/j.issn.1005-3026.2024.07.012
• Mechanical Engineering • Previous Articles Next Articles
Wei-wei LIU(), Jia-he QIU, Guang-da HU, Ze-yuan LIU
Received:
2023-03-20
Online:
2024-07-15
Published:
2024-10-29
Contact:
Wei-wei LIU
About author:
LIU Wei-weiE-mail:liuww@dlut.edu.cnCLC Number:
Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010.
算法 | CA | BiFPN | Ghostconv | 精度 | 召回率 | mAP/% | 参数量 | F1 | 检测速度/(帧 |
---|---|---|---|---|---|---|---|---|---|
YOLOv5 | 0.840 | 0.91 | 80.0 | 7 030 417 | 0.76 | 31 | |||
Improved 1 | √ | 0.885 | 0.94 | 84.7 | 7 045 521 | 0.82 | 29 | ||
Improved 2 | √ | 0.907 | 0.93 | 84.9 | 7 169 402 | 0.84 | 28 | ||
Improved 3 | √ | √ | 0.917 | 0.96 | 86.6 | 7 112 097 | 0.83 | 24 | |
Improved 4 | √ | √ | 0.875 | 0.96 | 86.0 | 6 665 946 | 0.83 | 30 | |
Improved 5 | √ | √ | √ | 0.873 | 0.98 | 88.4 | 6 679 601 | 0.84 | 33 |
Table 1 Ablation experiments of YOLOv5
算法 | CA | BiFPN | Ghostconv | 精度 | 召回率 | mAP/% | 参数量 | F1 | 检测速度/(帧 |
---|---|---|---|---|---|---|---|---|---|
YOLOv5 | 0.840 | 0.91 | 80.0 | 7 030 417 | 0.76 | 31 | |||
Improved 1 | √ | 0.885 | 0.94 | 84.7 | 7 045 521 | 0.82 | 29 | ||
Improved 2 | √ | 0.907 | 0.93 | 84.9 | 7 169 402 | 0.84 | 28 | ||
Improved 3 | √ | √ | 0.917 | 0.96 | 86.6 | 7 112 097 | 0.83 | 24 | |
Improved 4 | √ | √ | 0.875 | 0.96 | 86.0 | 6 665 946 | 0.83 | 30 | |
Improved 5 | √ | √ | √ | 0.873 | 0.98 | 88.4 | 6 679 601 | 0.84 | 33 |
算法 | SE | CBAM | CA | 精度 | 召回率 | mAP/% | 参数量 | F1 | 检测速度/(帧·s-1) |
---|---|---|---|---|---|---|---|---|---|
Model 1 | √ | 0.884 | 0.97 | 85.9 | 6 671 377 | 0.84 | 32 | ||
Model 2 | √ | 0.907 | 0.95 | 86.8 | 6 671 475 | 0.85 | 33 | ||
本文 | √ | 0.873 | 0.98 | 88.4 | 6 679 601 | 0.84 | 33 |
Table 2 Comparison of the attention mechanism module performance
算法 | SE | CBAM | CA | 精度 | 召回率 | mAP/% | 参数量 | F1 | 检测速度/(帧·s-1) |
---|---|---|---|---|---|---|---|---|---|
Model 1 | √ | 0.884 | 0.97 | 85.9 | 6 671 377 | 0.84 | 32 | ||
Model 2 | √ | 0.907 | 0.95 | 86.8 | 6 671 475 | 0.85 | 33 | ||
本文 | √ | 0.873 | 0.98 | 88.4 | 6 679 601 | 0.84 | 33 |
算法 | 速度/(帧·s-1) | mAP/% | AP/% | |||
---|---|---|---|---|---|---|
凹坑 | 变形 | 划痕 | 锈蚀 | |||
YOLOv3 | 29 | 69.7 | 83.3 | 69.9 | 64.6 | 51.4 |
SSD | 18 | 76.2 | 76.2 | 93.4 | 73.1 | 62.4 |
Faster-RCNN | <10 | 64.6 | 77.6 | 67.3 | 59.3 | 54.5 |
Faster-RCNN(FPN) | <10 | 80.3 | 87.4 | 85.5 | 83.9 | 64.4 |
YOLOv5 | 32 | 80.0 | 90.5 | 97.0 | 81.3 | 51.1 |
Improved YOLOv5 | 33 | 88.4 | 98.4 | 90.3 | 87.3 | 77.7 |
Table 3 Performance comparison of different models
算法 | 速度/(帧·s-1) | mAP/% | AP/% | |||
---|---|---|---|---|---|---|
凹坑 | 变形 | 划痕 | 锈蚀 | |||
YOLOv3 | 29 | 69.7 | 83.3 | 69.9 | 64.6 | 51.4 |
SSD | 18 | 76.2 | 76.2 | 93.4 | 73.1 | 62.4 |
Faster-RCNN | <10 | 64.6 | 77.6 | 67.3 | 59.3 | 54.5 |
Faster-RCNN(FPN) | <10 | 80.3 | 87.4 | 85.5 | 83.9 | 64.4 |
YOLOv5 | 32 | 80.0 | 90.5 | 97.0 | 81.3 | 51.1 |
Improved YOLOv5 | 33 | 88.4 | 98.4 | 90.3 | 87.3 | 77.7 |
1 | Syed R, Wang J G, Jing D Y,et al.Case study:optimization of case depth in induction‑hardened 42CrMo steel shaft[J].IOP Conference Series:Materials Science and Engineering,2020,831(1):012004. |
2 | 孙斌.金属轴类零件表面缺陷成像与判识技术研究[D].南京:南京理工大学,2017. |
Sun Bin.Research on surface defect imaging and identification technology of metal shaft parts[D].Nanjing:Nanjing University of Science and Technology,2017. | |
3 | Jeon I, Lim H J, Liu P P,et al.Fatigue crack detection in rotating steel shafts using noncontact ultrasonic modulation measurements[J].Engineering Structures,2019,196:109293. |
4 | Neslušan M, Bahleda F, Minárik P,et al.Non‑destructive monitoring of corrosion extent in steel rope wires via Barkhausen noise emission[J].Journal of Magnetism and Magnetic Materials,2019,484:179-187. |
5 | Sha J W, Fan M B, Cao B H,et al.Noncontact and nondestructive evaluation of heat‑treated bearing rings using pulsed eddy current testing[J].Journal of Magnetism and Magnetic Materials,2021,521:167516. |
6 | Xie S J, Zhang L, Zhao Y,et al.Features extraction and discussion in a novel frequency‑band‑selecting pulsed eddy current testing method for the detection of a certain depth range of defects[J].NDT & E International,2020,111:102211. |
7 | Dai J J, Li T P, Xuan Z L,et al.Automated defect analysis system for industrial computerized tomography images of solid rocket motor grains based on YOLO‑V4 model[J].Electronics,2022,11(19):3215. |
8 | Tang M, Li Y Y, Yao W,et al.A strip steel surface defect detection method based on attention mechanism and multi‑scale maxpooling[J].Measurement Science and Technology,2021,32(11):115401. |
9 | Huang Z Y, Hu H J, Shen Z Y,et al.Lightweight edge‑attention network for surface‑defect detection of rubber seal rings[J].Measurement Science and Technology,2022,33(8):085401. |
10 | Guo S Y, Li L L, Guo T Y,et al.Research on mask‑wearing detection algorithm based on improved YOLOv5[J].Sensors,2022,22(13):4933. |
11 | 李鑫,李香蓉,汪诚,等.基于改进YOLOv5的航空发动机表面缺陷检测模型[J].激光与光电子学进展,2023,60(16):1615007. |
Li Xin, Li Xiang‑rong, Wang Cheng,et al.Aero‑engine surface defect detection model based on improved YOLOv5[J].Laser & Optoelectronics Progress,2023,60(16):1615007. | |
12 | Hou Q B, Zhou D Q, Feng J S.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,2021:13713-13722. |
13 | Tan M X, Pang R M, Le Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,2020:10781-10790. |
14 | Han K, Wang Y H, Tian Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,2020:1580-1589. |
15 | Liu W, Anguelov D, Erhan D,et al.SSD:single shot multibox detector[C]// Proceedings of 14th European Conference on Computer Vision-ECCV 2016.Cham:Springer,2016:21-37. |
16 | Redmon J, Farhadi A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2023-03-01].. |
17 | Ren S Q, He K M, Girshick R,et al.Faster R‑CNN:towards real‑time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. |
[1] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
[2] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
[3] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[4] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
[5] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
[6] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
[7] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[8] | HAO Bo, YIN Xing-chao, YAN Jun-wei, ZHANG Li. Gesture Recognition in the Complex Environment Based on Gan-St-YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 953-963. |
[9] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[10] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
[11] | LIN Qing-yang, CHEN Xiao-fang, XIE Yong-fang. An Superheat Identification Method in Aluminium Electrolysis Based on Residual Convolutional Self-Attention Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 8-17. |
[12] | LIU Yang, YAN Dong-mei, MENG Fan-wei. Improved Two-Branch Person Re-identification Algorithm Based on Transformer [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 26-32. |
[13] | GU De-ying, LUO Yu-lun, LI Wen-chao. Traffic Target Detection in Complex Scenes Based on Improved YOLOv5 Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1073-1079. |
[14] | DAI Yin, LIU Wei-bin, DONG Xin-yang, SONG Yu-meng. U-Net CSF Cells Segmentation Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 944-950. |
[15] | YU Zhe-zhou, LIU Yan, LIU Yuan-ning. Improved Iris Locating Algorithm Based on YOLOV3 [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 496-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||