Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (7): 1037-1046.DOI: 10.12068/j.issn.1005-3026.2024.07.016
• Resources & Civil Engineering • Previous Articles Next Articles
Qing-yuan WANG1,2,3, Ying XU1,2,3, Sheng QIAN1,2,3
Received:
2022-10-11
Online:
2024-07-15
Published:
2024-10-29
CLC Number:
Qing-yuan WANG, Ying XU, Sheng QIAN. Simulation on Cracking of Random Aggregate Model of Concrete Three-Point Bending Beam[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1037-1046.
组号 | 水 | 水泥 | 水灰比 | 细骨料 | 粗骨料 | 减水剂 | 压缩强度 | 弹性模量 |
---|---|---|---|---|---|---|---|---|
kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | MPa | GPa | ||
C30 | 200 | 279 | 0.72 | 1025 | 838 | 0.4 | 34.40 | 19.52 |
C40 | 195 | 463 | 0.42 | 867 | 866 | 3.8 | 42.37 | 21.02 |
C60 | 153 | 512 | 0.30 | 642 | 1071 | 6.2 | 63.43 | 23.00 |
Table 1 Concrete mix ratios and mechanical parameters
组号 | 水 | 水泥 | 水灰比 | 细骨料 | 粗骨料 | 减水剂 | 压缩强度 | 弹性模量 |
---|---|---|---|---|---|---|---|---|
kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | kg·m-3 | MPa | GPa | ||
C30 | 200 | 279 | 0.72 | 1025 | 838 | 0.4 | 34.40 | 19.52 |
C40 | 195 | 463 | 0.42 | 867 | 866 | 3.8 | 42.37 | 21.02 |
C60 | 153 | 512 | 0.30 | 642 | 1071 | 6.2 | 63.43 | 23.00 |
参数 | 骨料 | 砂浆 | ITZ | MII |
---|---|---|---|---|
弹性模量/GPa | 72 | 28 | 24 | 26 |
平面内泊松比 | 0.16 | 0.2 | — | — |
最大容许拉应力/MPa | — | — | 2.6 | 4 |
最大容许切应力/MPa | — | — | 12 | 30 |
Ⅰ型断裂能/(N·mm-1) | — | — | 0.025 | 0.1 |
Ⅱ型断裂能/(N·mm-1) | — | — | 0.625 | 2.5 |
准则材料系数 | — | — | 1.2 | 1.2 |
Table 2 Material parameters of baseline model
参数 | 骨料 | 砂浆 | ITZ | MII |
---|---|---|---|---|
弹性模量/GPa | 72 | 28 | 24 | 26 |
平面内泊松比 | 0.16 | 0.2 | — | — |
最大容许拉应力/MPa | — | — | 2.6 | 4 |
最大容许切应力/MPa | — | — | 12 | 30 |
Ⅰ型断裂能/(N·mm-1) | — | — | 0.025 | 0.1 |
Ⅱ型断裂能/(N·mm-1) | — | — | 0.625 | 2.5 |
准则材料系数 | — | — | 1.2 | 1.2 |
组别 | 骨料总面积 占比 | 粗骨料 (5~10 mm) | 细骨料 (1~5 mm) |
---|---|---|---|
C30 | 30.4 | 0.113 | 0.191 |
C40 | 42.9 | 0.158 | 0.268 |
C60 | 47.3 | 0.175 | 0.297 |
Table 3 Calculation results of aggregate area with different percentages
组别 | 骨料总面积 占比 | 粗骨料 (5~10 mm) | 细骨料 (1~5 mm) |
---|---|---|---|
C30 | 30.4 | 0.113 | 0.191 |
C40 | 42.9 | 0.158 | 0.268 |
C60 | 47.3 | 0.175 | 0.297 |
1 | Ying J W, Guo J.Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model[J].Materials,2021,14(15):4314. |
2 | Zhang P, Li J C, Zhao Y,et al.Crack propagation analysis and fatigue life assessment of high‐strength bolts based on fracture mechanics[J].Science Reports,2023,13:14567. |
3 | Michels J, Zile E, Czaderski C,et al.Debonding failure mechanisms in prestressed CFRP/epoxy/concrete connections[J].Engineering Fracture Mechanics,2014,132:16-37. |
4 | 肖宇轩,叶晓峰,周伟,等.基于非线性断裂力学模型的混凝土坝闸墩裂缝成因分析[J].武汉大学学报(工学版),2022,55(3):229-237. |
Xiao Yu‑xuan, Ye Xiao‑feng, Zhou Wei,et al.Cause analysis of cracks in piers of concrete dam based on nonlinear fracture mechanics model[J].Engineering Journal of Wuhan University,2022,55(3):229-237. | |
5 | Barenblatt G I.The formation of equilibrium cracks during brittle fracture.General ideas and hypotheses.Axially‑symmetric cracks[J].Journal of Applied Mathematics and Mechanics,1959,23(3):622-636. |
6 | Vishalakshi K P, Revathi V, Reddy S S.Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete[J].Engineering Fracture Mechanics,2018,194:52-60. |
7 | 徐世烺,熊松波,李贺东,等.混凝土断裂参数厚度尺寸效应的定量表征与机理分析[J].土木工程学报,2017,50(5):57-71. |
Xu Shi‑lang, Xiong Song‑bo, Li He‑dong,et al.Quantitative characterization and mechanism analysis on thickness‑dependent size effect of concrete fracture[J].China Civil Engineering Journal,2017,50(5):57-71. | |
8 | 熊学玉,肖启晟.基于内聚力模型的混凝土细观拉压统一数值模拟方法[J].水利学报,2019,50(4):448-462. |
Xiong Xue‑yu, Xiao Qi‑sheng.A unified meso‑scale simulation method for concrete under both tension and compression based on cohesive zone model[J]. Journal of Hydraulic Engineering,2019,50(4):448-462. | |
9 | 田文祥,周伟,林力,等.基于内聚力模型复合水泥基材料细观开裂模拟[C]//中国力学大会(CCTAM 2019).杭州,2019:1515-1526. |
Tian Wen‑xiang, Zhou Wei, Lin Li,et al.Meso‑cracking simulation of composite cement‑based material based on cohesive zone model[C]//The Chinese Conference of Theoretical and Applied Mechanicals (CCTAM 2019).Hangzhou,2019:1515-1526.) | |
10 | Słowik M.The analysis of failure in concrete and reinforced concrete beams with different reinforcement ratio[J].Archive of Applied Mechanics,2019,89:885–895. |
11 | Marulli M R, Valverde‑Gonzalez A, Paggi M,et al.A combined phase‐field and cohesive zone model approach for crack propagation in layered structures made of nonlinear rubber‑like materials[J].Computer Methods in Applied Mechanics and Engineering,2022,395:11507. |
12 | Gyurko Z, Nemes R.Fracture modelling of normal concrete using different types of aggregates[J].Engineering Failure Analysis,2019,101:464-472. |
13 | Manning J M, Lee C K, Cerami A,et al.Determination of the fracture energy of mortar and concrete by means of three‑point bend tests on notched beams[J].Materials & Structures,1985,18:287-290. |
14 | Shah S P.Determination of fracture parameters (KIcs and CTODc) of plain concrete using three‐point bend tests[J].Materials & Structures,1990,23(6):457-460. |
15 | 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: [S].北京:中国建筑工业出版社,2019. |
Ministry of Housing and Urban‐Rural Developing of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: [S].Beijing:China Architecture & Building Press,2019. | |
16 | 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: [S].北京:中国建筑工业出版社,2009. |
Ministry of Housing and Urban‐Rural Developing of the People’s Republic of China. Standard for test methods of long‑term performance and durability of ordinary concrete: [S].Beijing:China Architecture & Building Press,2009. | |
17 | Wang Q Y, Xu Y, Liu C Y.Concrete microcracks detection under compressive load based on nonlinear ultrasonics modulation with broadband excitation[J].Research in Nondestructive Evaluation,2022,33(2):98-120. |
18 | Yuan W Y, Dong W, Zhang B S,et al.Determination of double‑K fracture parameters of concrete using bottom‑notched splitting test[J]. Journal of Materials in Civil Engineering,2023,35(5):04023066. |
[1] | Shu-hong WANG, Chang-yu LIU, Qin-kuan HOU, Ying CAO. Grinding Characteristics and Gelling Activity of Siliceous Iron Ore Tailings Under Different Activation Modes [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1028-1036. |
[2] | Wei-qi ZHANG, Hui-ming WANG. Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 738-744. |
[3] | Meng CHEN, Yu HONG. Test Study on Drying Shrinkage Properties of Engineered Cementitious Composites with RTP‐PVA Hybrid Fibre [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 407-414. |
[4] | JIA Peng, DU Gong-cheng, REN Yun-yang, WU Zhen-dong. Strength and Frost-Resistance Properties of the Vibration-Mixed Concrete [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1784-1789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||