Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (7): 1057-1064.DOI: 10.12068/j.issn.1005-3026.2024.07.018
• Resources & Civil Engineering • Previous Articles
Kai-li XU(), Xi-meng CHEN, Bo LIU
Received:
2023-03-05
Online:
2024-07-15
Published:
2024-10-29
Contact:
Kai-li XU
About author:
XU Kai-liE-mail:xukaili@mail.neu.edu.cnCLC Number:
Kai-li XU, Xi-meng CHEN, Bo LIU. Experimental Study on Explosion Characteristics of Oolong Tea Dust[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1057-1064.
试样 | 水分 | 挥发分 | 灰分 | 固定碳 |
---|---|---|---|---|
乌龙茶叶 | 3.90 | 68.42 | 8.58 | 19.10 |
松木屑 | 4.75 | 80.56 | 0.56 | 14.13 |
烟草粉尘 | 10.56 | 65.10 | 12.04 | 12.30 |
Table 1 Industry analysis data of dust (mass fraction) %
试样 | 水分 | 挥发分 | 灰分 | 固定碳 |
---|---|---|---|---|
乌龙茶叶 | 3.90 | 68.42 | 8.58 | 19.10 |
松木屑 | 4.75 | 80.56 | 0.56 | 14.13 |
烟草粉尘 | 10.56 | 65.10 | 12.04 | 12.30 |
序号 | 加热板设置温度/℃ | 粉尘层内部最高温度/℃ | Δt/℃ | 着火时间/min | 实验结果 | 实验现象 |
---|---|---|---|---|---|---|
1 | 250 | 442.5 | 192.5 | 25 | 着火 | 发出红光 |
2 | 240 | 164.8 | -75.2 | — | 未着火 | 无变化 |
3 | 240 | 238.0 | -2.0 | — | 未着火 | 无变化 |
Table 2 Test results of oolong tea MITL
序号 | 加热板设置温度/℃ | 粉尘层内部最高温度/℃ | Δt/℃ | 着火时间/min | 实验结果 | 实验现象 |
---|---|---|---|---|---|---|
1 | 250 | 442.5 | 192.5 | 25 | 着火 | 发出红光 |
2 | 240 | 164.8 | -75.2 | — | 未着火 | 无变化 |
3 | 240 | 238.0 | -2.0 | — | 未着火 | 无变化 |
序号 | 炉膛温度/℃ | 粉尘质量浓度/(g·m-3) | 实验结果 |
---|---|---|---|
1 | 500 | 1 000 | 未着火 |
2 | 550 | 1 000 | 着火 |
3 | 525 | 1 000 | 着火 |
4 | 525 | 2 000 | 着火 |
5 | 500 | 2 000 | 未着火 |
6 | 525 | 3 000 | 着火 |
7 | 500 | 3 000 | 未着火 |
8 | 500 | 4 000 | 未着火 |
9 | 500 | 500 | 未着火 |
Table 3 Test results of oolong tea MITC
序号 | 炉膛温度/℃ | 粉尘质量浓度/(g·m-3) | 实验结果 |
---|---|---|---|
1 | 500 | 1 000 | 未着火 |
2 | 550 | 1 000 | 着火 |
3 | 525 | 1 000 | 着火 |
4 | 525 | 2 000 | 着火 |
5 | 500 | 2 000 | 未着火 |
6 | 525 | 3 000 | 着火 |
7 | 500 | 3 000 | 未着火 |
8 | 500 | 4 000 | 未着火 |
9 | 500 | 500 | 未着火 |
序号 | 样品质量 | 点火延时 | 放电能量 | 实验结果 | 次数 | ||
---|---|---|---|---|---|---|---|
g | ms | mJ | |||||
1 | 1.2 | 90 | 100 | 未着火 | 10 | ||
2 | 1.2 | 90 | 300 | 未着火 | 10 | ||
3 | 1.2 | 90 | 1 000 | 未着火 | 10 | ||
4 | 2.4 | 90 | 1 000 | 未着火 | 10 | ||
5 | 3.6 | 90 | 1 000 | 未着火 | 10 | ||
6 | 3.6 | 60 | 1 000 | 未着火 | 10 | ||
7 | 3.6 | 120 | 1 000 | 未着火 | 10 | ||
8 | 3.6 | 150 | 1 000 | 未着火 | 10 | ||
9 | 2.4 | 60 | 1 000 | 未着火 | 10 | ||
10 | 2.4 | 120 | 1 000 | 未着火 | 10 | ||
11 | 2.4 | 150 | 1 000 | 未着火 | 10 | ||
12 | 1.2 | 60 | 1 000 | 未着火 | 10 | ||
13 | 1.2 | 120 | 1 000 | 未着火 | 10 | ||
14 | 1.2 | 150 | 1 000 | 未着火 | 10 |
Table 4 Test results of oolong tea dust cloud MIE
序号 | 样品质量 | 点火延时 | 放电能量 | 实验结果 | 次数 | ||
---|---|---|---|---|---|---|---|
g | ms | mJ | |||||
1 | 1.2 | 90 | 100 | 未着火 | 10 | ||
2 | 1.2 | 90 | 300 | 未着火 | 10 | ||
3 | 1.2 | 90 | 1 000 | 未着火 | 10 | ||
4 | 2.4 | 90 | 1 000 | 未着火 | 10 | ||
5 | 3.6 | 90 | 1 000 | 未着火 | 10 | ||
6 | 3.6 | 60 | 1 000 | 未着火 | 10 | ||
7 | 3.6 | 120 | 1 000 | 未着火 | 10 | ||
8 | 3.6 | 150 | 1 000 | 未着火 | 10 | ||
9 | 2.4 | 60 | 1 000 | 未着火 | 10 | ||
10 | 2.4 | 120 | 1 000 | 未着火 | 10 | ||
11 | 2.4 | 150 | 1 000 | 未着火 | 10 | ||
12 | 1.2 | 60 | 1 000 | 未着火 | 10 | ||
13 | 1.2 | 120 | 1 000 | 未着火 | 10 | ||
14 | 1.2 | 150 | 1 000 | 未着火 | 10 |
序号 | 样品质量 | 点火延时 | 放电能量 | 实验结果 | 次数 |
---|---|---|---|---|---|
g | ms | mJ | |||
1 | 3.6 | 60 | 1 000 | 未着火 | 10 |
2 | 3.6 | 90 | 1 000 | 未着火 | 10 |
3 | 3.6 | 120 | 1 000 | 未着火 | 10 |
4 | 3.6 | 150 | 1 000 | 未着火 | 10 |
5 | 2.4 | 60 | 1 000 | 未着火 | 10 |
6 | 2.4 | 90 | 1 000 | 未着火 | 10 |
7 | 2.4 | 120 | 1 000 | 未着火 | 10 |
8 | 2.4 | 150 | 1 000 | 未着火 | 10 |
9 | 1.2 | 60 | 1 000 | 未着火 | 10 |
10 | 1.2 | 90 | 1 000 | 未着火 | 10 |
11 | 1.2 | 120 | 1 000 | 未着火 | 10 |
12 | 1.2 | 150 | 1 000 | 未着火 | 10 |
Table 5 Test results of oolong tea dust cloud MIE without inductance
序号 | 样品质量 | 点火延时 | 放电能量 | 实验结果 | 次数 |
---|---|---|---|---|---|
g | ms | mJ | |||
1 | 3.6 | 60 | 1 000 | 未着火 | 10 |
2 | 3.6 | 90 | 1 000 | 未着火 | 10 |
3 | 3.6 | 120 | 1 000 | 未着火 | 10 |
4 | 3.6 | 150 | 1 000 | 未着火 | 10 |
5 | 2.4 | 60 | 1 000 | 未着火 | 10 |
6 | 2.4 | 90 | 1 000 | 未着火 | 10 |
7 | 2.4 | 120 | 1 000 | 未着火 | 10 |
8 | 2.4 | 150 | 1 000 | 未着火 | 10 |
9 | 1.2 | 60 | 1 000 | 未着火 | 10 |
10 | 1.2 | 90 | 1 000 | 未着火 | 10 |
11 | 1.2 | 120 | 1 000 | 未着火 | 10 |
12 | 1.2 | 150 | 1 000 | 未着火 | 10 |
序号 | ρ/(g·m-3) | pex/MPa | PR | 是否爆炸 |
---|---|---|---|---|
1 | 100 | 0.080 4 | 1.490 | 未爆炸 |
2 | 100 | 0.070 6 | 1.392 | 未爆炸 |
3 | 100 | 0.118 3 | 1.869 | 未爆炸 |
4 | 120 | 0.350 6 | 4.192 | 爆炸 |
Table 6 Test results of oolong tea dust cloud LEL
序号 | ρ/(g·m-3) | pex/MPa | PR | 是否爆炸 |
---|---|---|---|---|
1 | 100 | 0.080 4 | 1.490 | 未爆炸 |
2 | 100 | 0.070 6 | 1.392 | 未爆炸 |
3 | 100 | 0.118 3 | 1.869 | 未爆炸 |
4 | 120 | 0.350 6 | 4.192 | 爆炸 |
爆炸等级 | 爆炸指数/(MPa·m·s-1) | 爆炸属性 |
---|---|---|
St-1 | 0<K<20 | 弱 |
St-2 | 20≤K≤30 | 强 |
St-3 | K>30 | 极强 |
Table 7 Dust explosion hazard classification
爆炸等级 | 爆炸指数/(MPa·m·s-1) | 爆炸属性 |
---|---|---|
St-1 | 0<K<20 | 弱 |
St-2 | 20≤K≤30 | 强 |
St-3 | K>30 | 极强 |
1 | 郑功宇,陈寿松,李丹,等.茶叶精加工过程中粉尘问题的研究探讨[J].中国茶叶加工,2014(1):35-39. |
Zheng Gong‑yu, Chen Shou‑song, Li Dan,et al.Study of the dust problem of the tea refining process[J].China Tea Processing,2014(1):35-39. | |
2 | 温正军,申瑶,何升波,等.茶叶精制加工过程中粉尘研究现状及展望[J].茶叶,2017,43(4):193-197. |
Wen Zheng‑jun, Shen Yao, He Sheng‑bo,et al.A review on formation and control of tea dusts during tea refinement process[J].Journal of Tea,2017,43(4):193-197. | |
3 | 徐伟巍,覃欣欣.浓度与粒径对烟草粉尘爆炸压力的影响[J].山东化工,2020,49(12):224-225. |
Xu Wei‑wei, Qin Xin‑xin.Effect of concentration and size on explosion pressure of tobacco dust[J].Shandong Chemical Industry,2020,49(12):224-225. | |
4 | Zhang Q, Zhang B.Effect of ignition delay on explosion parameters of corn dust/air in confined chamber[J].Journal of Loss Prevention in the Process Industries,2015,33:23-28. |
5 | Wang Q H, Fang X, Wen H,et al.Explosion hazards of colored powders and the effects of suppressant powder materials[J].Powder Technology,2021,390:11-19. |
6 | Zhao Q, Chen X F, Dai H M,et al.Inhibition of diammonium phosphate on the wheat dust explosion[J].Powder Technology,2020,367:751-761. |
7 | 陈国华,江湖一佳,王新华.红木粉爆炸特性实验研究[J].消防科学与技术,2016,35(9):1200-1203. |
Chen Guo‑hua, Jiang Hu‑yi‑jia, Wang Xin‑hua.Study on characteristics of mahogany wood dust explosion[J].Fire Science and Technology,2016,35(9):1200-1203. | |
8 | ASTM International. Standard test method for hot‑surface ignition temperature of dust layers: [S].West Conshohocken,PA:ASTM International,2015. |
9 | ASTM International. Standard test method for minimum autoignition temperature of dust clouds: [S].West Conshohocken,PA:ASTM International,2019. |
10 | Yan H W, Nie B S, Peng C,et al.Evaluation on explosion characteristics and parameters of pulverized coal for low‑quality coal:experimental study and analysis[J].Environmental Science and Pollution Research,2022,29:18851-18867. |
11 | ASTM International. Standard test method for minimum ignition energy of a dust cloud in air: [S].West Conshohocken,PA:ASTM International,2019. |
12 | 代濠源,樊建春,刘迪,等.粒径对硫磺燃烧爆炸特性影响的试验研究[J].中国安全生产科学技术,2015,11(2):120-124. |
Dai Hao‑yuan, Fan Jian‑chun, Liu Di,et al.Experimental study on influence of particle size to combustion and explosion characteristics of sulfur[J].Journal of Safety Science and Technology,2015,11(2):120-124. | |
13 | ASTM International. Standard test method for minimum explosible concentration of combustible dusts: [S].West Conshohocken,PA:ASTM International,2022. |
14 | 于立富,李刚,潘超,等.中国油页岩粉尘爆炸特性实验研究[J].东北大学学报(自然科学版),2016,37(8):1203-1206. |
Yu Li‑fu, Li Gang, Pan Chao,et al.Experimental research on China’s oil shale dust explosibility[J].Journal of Northeastern University(Natural Science),2016,37(8):1203-1206. | |
15 | Balantič J, Skobir Balantič D A, Novosel B.Investigation of the explosion‑related parameters and their influence on the severity of an explosion involving aluminum dust[J].Process Safety Progress,2019,38(4):e12047. |
16 | Yang J, Yu Y, Li Y H,et al.Experimental investigation of the suppression effects of ammonium polyphosphate on explosion characteristics of unsaturated polyester resin dust[J].Fire and Materials,2020,44(6):854-864. |
17 | Wang J F, Meng X B, Ma X S,et al.Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust[J].Process Safety Progress,2019,38(3):e12075. |
18 | Wan Sulaiman W Z, Mohd Idris M F, Gimbun J,et al.Assessment of explosibility and explosion severity of rice flour at different concentration and ignition time[J].Process Safety Progress,2020,39(sup1):e12107. |
19 | ASTM International. Standard test method for explosibility of dust clouds: [S].West Conshohocken,PA:ASTM International,2019. |
20 | Cheng Y C, Huang H C, Luo J W,et al.Evaluation of the dust potential hazard of thermal power plants through coal dust combustion and explosion characteristics[J].Journal of Thermal Analysis and Calorimetry,2021,144(2):575-585. |
21 | 李畅.微米及纳米钛粉爆炸特性参数的理论与实验研究[D].沈阳:东北大学,2015. |
Li Chang.Theoretical and experimental study on explosibility parameters of micro and nano titanium powders[D].Shenyang:Northeastern University,2015. | |
22 | Sakata K, Tagomori K, Sugiyama N,et al.Dust explosion characteristics of aluminum,titanium,zinc,and iron‑based alloy powders used in cold spray processing[J].Journal of Thermal Spray Technology,2014,23(1/2):123-130. |
23 | Song N, Luo T Y, Yu Y,et al.Investigation on suppression of melamine polyphosphate on acrylonitrile‑butadiene‑styrene dust explosion[J].Process Safety Progress,2021,40(4):345-354. |
24 | Tsai Y T, Yang Y, Huang H C,et al.Inhibitory effects of three chemical dust suppressants on nitrocellulose dust cloud explosion[J].AIChE Journal,2020,66(5):e16888. |
25 | 卫园梦,王庆慧,杨晓明,等.微米级硅粉粉尘爆炸特性及抑爆试验研究[J].消防科学与技术,2019,38(6):775-779. |
Wei Yuan‑meng, Wang Qing‑hui, Yang Xiao‑ming,et al.Experimental study on explosion characteristics and explosion suppression of micron silicon dust[J].Fire Science and Technology,2019,38(6):775-779. | |
26 | Lin T H, Lin S Y, Hsueh K H,et al.Dust explosion parameters of polyester resin[J].Journal of Thermal Analysis and Calorimetry,2017,127(1):1037-1045. |
27 | Sun H, Pan Y, Guan J,et al.Thermal decomposition behaviors and dust explosion characteristics of nano‑polystyrene[J].Journal of Thermal Analysis and Calorimetry,2019,135(4):2359-2366. |
28 | Magdziarz A, Wilk M.Thermal characteristics of the combustion process of biomass and sewage sludge[J].Journal of Thermal Analysis and Calorimetry,2013,114(2):519-529. |
[1] | Gang LI, Yan-ying MA, Zong-yang LIU, Xiang-li NAN. Ignition Sensitivity of Al/Fe2O3 Thermite Dust [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 415-421. |
[2] | WANG Ze-hong, TIAN Peng-cheng, MAO Yong. Effects of Grinding Aids Glycerol and Sodium Pyrophosphate on Kinetic Parameters of Quartz Grinding [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1009-1018. |
[3] | ZHAO Fei-xiang, CHI Shi-chun. A Simulation Method for Particle Breakage with Random Fragment Size Based on Discrete Element Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 408-414. |
[4] | WANG Nai-ling, LU Ji-wei, XU Xin-yang, JIANG Yan-xin. Study on Process Mineralogy of Flake Graphite Ore in Ping’an County Jixi City, Heilongjiang Province [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1785-1790. |
[5] | YANG You-jian, QI Jun-feng, PANG Xiao-juan, WANG Zhao-wen. Analysis of Attrition Index of the Smelter Grade Alumina Particle [J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 801-806. |
[6] | GUO Kuai-kuai, SHANG Shuo, CHEN Jin, LIU Chang-sheng. Numerical Simulation of Influence of Atomization Pressure on Particle Size of GH4169 Alloy Powders [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 807-811. |
[7] | GUO Kuai-kuai, CHEN Jin, LIU Chang-sheng, CHEN Sui-yuan. Numerical Simulation of the Intersection Angle Influence on Atomization Process of Powders Produced by VIGA [J]. Journal of Northeastern University Natural Science, 2020, 41(5): 729-735. |
[8] | KANG Yue, LIU Chao, ZHANG Yu-zhu, JIANG Mao-fa. Properties of Glass Beads Prepared by Gas Quenching of Blast Furnace Slag [J]. Journal of Northeastern University Natural Science, 2019, 40(2): 202-206. |
[9] | XIE Yuan-hua, MEI Jian, WANG Jie, ZHU Tong. Experimental Study on Disintegration of Excess Sludge by Explosive Shock Wave [J]. Journal of Northeastern University Natural Science, 2018, 39(3): 446-450. |
[10] | HAO Wen-ge, LIU Sai, ZHANG Xin-an, CAI Ji-ying. Superfine Dust Removal Performance in Vertically Quadrate Wet Electrostatic Precipitation [J]. Journal of Northeastern University Natural Science, 2017, 38(11): 1637-1642. |
[11] | YU Li-fu, LI Gang, PAN Chao, YUAN Chun-miao. Experimental Research on China’s Oil Shale Dust Explosibility [J]. Journal of Northeastern University Natural Science, 2016, 37(8): 1203-1206. |
[12] | LI Dong, YIN Wan-zhong, MA Ying-qiang, YAO Jin. Effects of Particle Size Distribution on Hematite Flotation [J]. Journal of Northeastern University Natural Science, 2016, 37(6): 865-868. |
[13] | LI Zhi-hang, HAN Yue-xin, GAO Peng, YING Ping. Research on Processing Mineralogical Characterization of the Paigeite Ore [J]. Journal of Northeastern University Natural Science, 2016, 37(2): 258-262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||