Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (4): 78-86.DOI: 10.12068/j.issn.1005-3026.2025.20230268
• Resources & Civil Engineering • Previous Articles Next Articles
Gang LI, Xiu-peng ZHANG, Wei-da CHANG, Wei ZHOU
Received:
2023-09-15
Online:
2025-04-15
Published:
2025-07-01
CLC Number:
Gang LI, Xiu-peng ZHANG, Wei-da CHANG, Wei ZHOU. Explosion Characteristics of NCM Lithium-Ion Battery Vent Gases After Thermal Runaway Under High Temperature Conditions[J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 78-86.
序号 | 时间 | 事故描述 | 事故原因 |
---|---|---|---|
1 | 2010年3月 | 两台iPod Nano音乐播放器过热起火,日本 | 锂离子电池过热[ |
2 | 2011年4月 | 电动出租车起火,中国杭州 | 短路导致电解液燃烧 |
3 | 2013年10月 | 6辆特斯拉Model S新能源汽车起火 | 因碰撞造成电池短路、电池自燃等 |
4 | 2015年4月 | 电动公交车在充电过程中起火,中国深圳 | BMS故障导致蓄电池过充 |
5 | 2017年10月 | 电动汽车起火,奥地利 | 撞车后汽车的锂离子电池起火 |
6 | 2019年4月 | 1个2 MW的储能系统发生爆炸,美国亚利桑那州 | 电池内部缺陷[ |
7 | 2021年4月 | 电化学储能系统发生爆炸,中国北京 | 单体电池内部发生短路[ |
8 | 2023年6月 | 新能源汽车碰撞收费站设施后起火 | 因碰撞造成电池短路、电池自燃等 |
Table 1 Fire and explosion accidents caused by thermal runaway of lithium-ion batteries
序号 | 时间 | 事故描述 | 事故原因 |
---|---|---|---|
1 | 2010年3月 | 两台iPod Nano音乐播放器过热起火,日本 | 锂离子电池过热[ |
2 | 2011年4月 | 电动出租车起火,中国杭州 | 短路导致电解液燃烧 |
3 | 2013年10月 | 6辆特斯拉Model S新能源汽车起火 | 因碰撞造成电池短路、电池自燃等 |
4 | 2015年4月 | 电动公交车在充电过程中起火,中国深圳 | BMS故障导致蓄电池过充 |
5 | 2017年10月 | 电动汽车起火,奥地利 | 撞车后汽车的锂离子电池起火 |
6 | 2019年4月 | 1个2 MW的储能系统发生爆炸,美国亚利桑那州 | 电池内部缺陷[ |
7 | 2021年4月 | 电化学储能系统发生爆炸,中国北京 | 单体电池内部发生短路[ |
8 | 2023年6月 | 新能源汽车碰撞收费站设施后起火 | 因碰撞造成电池短路、电池自燃等 |
气体种类 | CO2 | CO | H2 | CH4 | C2H4 |
---|---|---|---|---|---|
体积分数 | 37.3 | 28.9 | 0.7 | 5.4 | 5.7 |
Table 2 Typical components of NCM lithium-ion
气体种类 | CO2 | CO | H2 | CH4 | C2H4 |
---|---|---|---|---|---|
体积分数 | 37.3 | 28.9 | 0.7 | 5.4 | 5.7 |
温度/℃ | 燃烧速度/(cm·s-1) | ||
---|---|---|---|
H2 | C2H4 | CH4 | |
25 | 311.06 | 9.27 | 37.51 |
120 | 468.34 | 140.07 | 60.61 |
Table 3 Maximum laminar burning velocity of H2
温度/℃ | 燃烧速度/(cm·s-1) | ||
---|---|---|---|
H2 | C2H4 | CH4 | |
25 | 311.06 | 9.27 | 37.51 |
120 | 468.34 | 140.07 | 60.61 |
1 | 张青松, 牛江昊, 赵洋. 不同正极材料锂离子电池热失控产物研究[J]. 消防科学与技术, 2023, 42(5): 598-602. |
Zhang Qing-song, Niu Jiang-hao, Zhao Yang.Research on thermal runaway products of lithiumio batteries with different cathode materials[J]. Fire Science and Technology, 2023,42(5):598-602. | |
2 | Jin Y, Zhao Z X, Miao S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: 102987. |
3 | Zalosh R, Gandhi P, Barowy A. Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104560. |
4 | Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Power Sources, 2012,208: 210-224. |
5 | 潘崇超, 李悦, 李娜, 等. 锂离子电池热失控研究综述与文献计量分析[J]. 科学技术与工程, 2021, 21(24): 10099-10107. |
Pan Chong-chao, Li Yue, Li Na, et al. Research review and bibliometric analysis of thermal runaway of lithium-ion battery[J]. Science Technology and Engineering, 2021, 21(24): 10099-10107. | |
6 | Choi D, Shamim N, Crawford A, et al. Li-ion battery technology for grid application[J]. Journal of Power Sources, 2021, 511: 230419. |
7 | ANSI/CAN/UL 9540A.Standard for test method for evaluating thermal runaway fire propagation in battery energy storage systems: UL 9540A Ed. 4-2019[S].[ul] Underwriters Laboratories, 2019. |
8 | Wang H B, Xu H, Zhang Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: a comparative study[J]. eTransportation, 2022, 13: 100190. |
9 | Baird A R, Archibald E J, Marr K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: 227257. |
10 | Golubkov A W, Fuchs D, Wagner J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
11 | Koch S, Fill A, Birke K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112. |
12 | CEN. Determination of the explosion limits and the limiting oxygen concentration (LOC) for flammable gases and vapours (British Standard): EN 1839: 2017 [S]. Lordon: British Standards Institution, 2017. |
13 | Huang L J, Wang Y, Pei S F, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186: 115840. |
14 | 尚融雪, 杨悦, 李刚. 高温下掺氢天然气层流预混火焰传播特性[J]. 东北大学学报(自然科学版), 2021, 42(8): 1173-1179. |
Shang Rong-xue, Yang Yue, Li Gang. Propagation of laminar premixed flames of CH4/H2/air mixtures at elevated temperatures[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1173-1179. | |
15 | Halter F, Chauveau C, Djebaïli-Chaumeix N, et al. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures[J]. Proceedings of the Combustion Institute, 2005, 30(1): 201-208. |
16 | Bosschaart K J, de Goey L P H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method[J]. Combustion and Flame, 2004, 136(3): 261-269. |
17 | Han X L, Wang Z H, Wang S X, et al. Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames[J]. Fuel, 2019, 239: 1028-1037. |
18 | Nilsson E J K, van Sprang A, Larfeldt J, et al. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane[J]. Fuel, 2017, 189: 369-376. |
19 | 尚融雪, 杨悦, 高俊豪, 等. 掺氢天然气层流火焰传播速度试验研究[J]. 中国安全科学学报, 2019, 29(11): 103-108. |
Shang Rong-xue, Yang Yue, Gao Jun-hao,et al. Experimental study on laminar flame speed of H2/CH4/air mixtures[J]. China Safety Science Journal, 2019, 29(11): 103-108. | |
20 | Wang Y L, Qi C, Ning Y, et al. Experimental determination of the lower flammability limit and limiting oxygen concentration of propanal/air mixtures under elevated temperatures and pressures[J]. Fuel, 2022, 326: 124882. |
21 | NFPA. Standard on explosion prevention systems. [S]. MA: National Fire Protection Association, 2014. |
22 | Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
[1] | Pei-hong ZHANG, Xin ZHANG, Zi-jian LI, Xue JIANG. Experimental Study on the Suppress Effect of Biphasic Flow Water Mist on Thermal Runaway Propagation in Lithium-Ion Batteries [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1185-1192. |
[2] | Kai-li XU, Xi-meng CHEN, Bo LIU. Experimental Study on Explosion Characteristics of Oolong Tea Dust [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1057-1064. |
[3] | ZHANG Pei-hong, YUAN Wei, WEI Zhong-yuan, LI Zi-jian. Thermal Runaway Analysis of NCM Lithium-Ion Battery in Humid and Hot Environment [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 881-887. |
[4] | GENG Shu-dong, ZHAI Yu-chun. Synthesis of LiCr○xMn2-○x○O4 by Sol-Gel Assisted High Temperature Ball Milling [J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 671-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||