
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (8): 1-10.DOI: 10.12068/j.issn.1005-3026.2025.20250060
• Overview •
Guo YUAN, Chao WANG, Zhen-lei LI, Guo-dong WANG
Received:2025-05-26
Online:2025-08-15
Published:2025-11-24
Contact:
Chao WANG
CLC Number:
Guo YUAN, Chao WANG, Zhen-lei LI, Guo-dong WANG. Research Progress in Key Technologies of Twin-Roll Strip Casting for Industrialization[J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 1-10.
| 项目 | 浇铸速度/(m·min-1) | 产品厚度/mm | 浇铸钢种 | 铸辊辊径/mm | 发展情况 |
|---|---|---|---|---|---|
| DSC | ≤90 | 1.6~5 | 不锈钢 | 1 200 | 终止生产 |
| Eurostrip | 40~90 ≤150 | 1.4~3.5 | 不锈钢 | 1 500 | 工业化进程 |
| Postrip | 30~130 ≤160 | 1.6~4 | 不锈钢 | 1 200 | 工业化进程 |
| CASTRIP | 40~120 | 0.7~2.0 | 碳钢 | 500 | 商业化进程 |
| Baostrip | 30~130 | 0.8~3.6 | 碳钢 | 800 | 工业化进程 |
| E2Strip | 30~75 | 1.0~2.2 | 碳钢、硅钢 | 500 | 工业化进程 |
Table 1 Development status of domestic and foreign twin-roll strip casting production lines
| 项目 | 浇铸速度/(m·min-1) | 产品厚度/mm | 浇铸钢种 | 铸辊辊径/mm | 发展情况 |
|---|---|---|---|---|---|
| DSC | ≤90 | 1.6~5 | 不锈钢 | 1 200 | 终止生产 |
| Eurostrip | 40~90 ≤150 | 1.4~3.5 | 不锈钢 | 1 500 | 工业化进程 |
| Postrip | 30~130 ≤160 | 1.6~4 | 不锈钢 | 1 200 | 工业化进程 |
| CASTRIP | 40~120 | 0.7~2.0 | 碳钢 | 500 | 商业化进程 |
| Baostrip | 30~130 | 0.8~3.6 | 碳钢 | 800 | 工业化进程 |
| E2Strip | 30~75 | 1.0~2.2 | 碳钢、硅钢 | 500 | 工业化进程 |
Fig.5 Influence of flow distribution process on molten pool level fluctuation and solidification characteristics of metal liquid during twin-roll strip casting process
Fig.6 Temperature and thermal deformation characteristics of casting roller based on the nonlinear thermal resistance distribution at the contact interface between the molten pool and the casting roller
| [1] | Guthrie R I L, Isac M M. Continuous casting practices for steel: past, present and future[J]. Metals, 2022, 12(5): 862. |
| [2] | Campbell P, Mahapatra R, Blejde W, et al. The CASTRIP® process: progress towards commercial strip casting at Nucor Crawfordsville[J]. Revue De Métallurgie-Cahiers D:Informations Techniques, 2006, 103(1): 25-31. |
| [3] | 方园, 张健. 双辊薄带连铸连轧技术的发展现状及未来[J]. 宝钢技术, 2018(4): 2-6. |
| Fang Yuan, Zhang Jian. Development status and future of twin roll strip casting & rolling [J]. Baosteel Technology, 2018 (4): 2-6. | |
| [4] | 史华跃, 冯庆晓, 董瀚, 等. 沙钢超薄带双辊铸轧工艺及超薄带耐候钢的发展现状[J]. 上海金属, 2020, 42(6): 51-57. |
| Shi Hua-yue, Feng Qing-xiao, Dong Han, et al. Development status of shasteel’s ultra-thin cast strip twin-roll casting and rolling process and weatherproof steel for ultra-thin cast strip [J]. Shanghai Metals, 2020, 42(6): 51-57. | |
| [5] | 蔡常青. 双辊薄带连铸连轧技术的现状与展望[J]. 福建冶金, 2022, 51(1): 50-54. |
| Cai Chang-qing. Present situation and prospect of twin-roll strip continuous casting and rolling technology [J]. Fujian Metallurgy, 2022, 51(1): 50-54. | |
| [6] | 杨泽曦, 王子铭, 李跃, 等. 双辊薄带连铸熔池内流动、传热与凝固的模拟研究[J]. 炼钢, 2023, 39(4): 48-54. |
| Yang Ze-xi, Wang Zi-ming, Li Yue, et al. Modelling of flow, heat transfer and solidification in the bath of twin roll strip continuous casting[J]. Steelmaking, 2023, 39(4): 48-54. | |
| [7] | 任三兵, 朱苗勇, 樊俊飞. 薄带连铸新型布流系统的数学物理模拟[J]. 东北大学学报(自然科学版), 2014, 35(1): 60-63. |
| Ren San-bing, Zhu Miao-yong, Fan Jun-fei. Mathematical and physical simulations of the new type feeding system in strip casting [J]. Journal of Northeastern University (Natural Science), 2014, 35(1): 60-63. | |
| [8] | 钟勇. 双辊薄带连铸熔池布流系统的数值模拟研究[D]. 重庆: 重庆大学, 2020. |
| Zhong Yong. Numerical simulation of distribution system in molten pool of twin roll strip continuous casting[D]. Chongqing: Chongqing University, 2020. | |
| [9] | Xu M G, Zhu M Y. Physical and computational study of a novel submerged entry nozzle design for twin-roll casting process[J]. Journal of Iron and Steel Research International, 2021, 28(11): 1390-1399. |
| [10] | Bai C F, Wang B, Ma J, et al. Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting[J]. Journal of Iron and Steel Research International, 2023, 30(1): 64-73. |
| [11] | 蒋恩, 刘刚. 双辊薄带连铸铸辊水冷系统数值模拟[J]. 一重技术, 2020(1): 1-4, 48. |
| Jiang En, Liu Gang. Numerical simulation to water cooling system of casting rolls in twin roll strip casters [J]. CFHI Technology, 2020(1): 1-4, 48. | |
| [12] | 朱光明, 方园. 双辊薄带连铸结晶辊辊形优化[J]. 钢铁研究学报, 2007, 19 (4): 28-30. |
| Zhu Guang-ming, Fang Yuan. Roll profile optimization of twin-roll strip casting rolls [J]. Journal of Iron and Steel Research, 2007, 19 (4): 28-30. | |
| [13] | Wang W L, Cai D W, Lu C, et al. Formation of deposited oxide film during the sub-rapid solidification of silicon steel droplet and its effect on interfacial heat transfer behavior[J]. Metallurgical and Materials Transactions B, 2022, 53(1): 198-207. |
| [14] | 刘孟, 宋仪杰, 徐晓虹, 等. 薄带连铸用BN基侧封板材料的性能研究及应用[J]. 耐火材料, 2015, 49(5): 357-360. |
| Liu Meng, Song Yi-jie, Xu Xiao-hong, et al. Properties and application of BN based side dam materials for thin strip continuous casting [J]. Refractories, 2015, 49(5): 357-360. | |
| [15] | 郭海荣, 李鑫, 李化龙, 等. 薄带连铸用侧封板服役过程中热应力分析[J]. 中国冶金, 2022, 32(4): 27-33. |
| Guo Hai-rong, Li Xin, Li Hua-long, et al.Thermal stress analysis during service of side sealing plate for thin strip continuous casting [J]. China Metallurgy, 2022, 32(4): 27-33. | |
| [16] | 张晓明, 张军锋, 刘相华, 等. 双辊铸轧薄带过程中铸速对熔池内温度场的影响[J]. 东北大学学报(自然科学版), 2006, 27(7): 759-762. |
| Zhang Xiao-ming, Zhang Jun-feng, Liu Xiang-hua, et al. Influence of casting speed on temperature field in molten pool during twin-roll strip casting [J]. Journal of Northeastern University (Natural Science), 2006, 27(7): 759-762. | |
| [17] | 张文宇, 马宇翔, 巨东英, 等. 双辊铸轧过程金属熔池液面的优化控制[J]. 辽宁科技大学学报, 2016, 39(2): 98-103. |
| Zhang Wen-yu, Ma Yu-xiang, Ju Dong-ying, et al. Optimal control of molten metal level in twin-roll casting process[J]. Journal of University of Science and Technology Liaoning, 2016, 39(2): 98-103. | |
| [18] | 齐春雨, 邸洪双, 张晓明, 等. 双辊铸轧薄带钢铸轧力计算公式及控制模型[J]. 黄金学报, 2001, 3(3): 168-170. |
| Qi Chun-yu, Di Hong-shuang, Zhang Xiao-ming, et al. Establishment of rolling force formula and process control model for twin-roll strip casting of thin steel strips [J]. Gold Journal, 2001,3 (3): 168-170. | |
| [19] | Browne F, Rees B, Chiu G T C, et al. Iterative learning control with time-delay compensation: an application to twin-roll strip casting[J]. IEEE Transactions on Control Systems Technology, 2021, 29(1): 140-149. |
| [20] | Chen D, Tang Y, Dou W X, et al. Detecting height of liquid level with computer vision for twin-roll strip casting[J]. ISIJ International, 2023, 63(7): 1226-1232. |
| [21] | Park Y, Cho H. A fuzzy logic controller for the molten steel level control of strip casting processes[J]. Control Engineering Practice, 2005, 13(7): 821-834. |
| [22] | 袁国, 张元祥, 王洋, 等. 薄带铸轧凝固组织的低能晶界及遗传效应[J]. 钢铁, 2023, 58(9): 157-166. |
| Yuan Guo, Zhang Yuan-xiang, Wang Yang, et al. Low-energy grain boundaries and their hereditary effects on microstructures in strip casting [J]. Iron and Steel, 2023, 58(9): 157-166. | |
| [23] | 杜锋, 方园. 影响薄带连铸低碳钢带表面微裂纹形成的主要因素[J]. 上海金属, 2012, 34(4): 48-53. |
| Du Feng, Fang Yuan. Main factors affecting surface micro crack on low carbon steel strip by strip casting [J]. Shanghai Metals, 2012, 34(4): 48-53. | |
| [24] | 王鹤松, 袁国, 曹光明, 等. 双辊薄带连铸低碳微合金钢的铸态组织[J]. 东北大学学报(自然科学版), 2018, 39(4): 497-500. |
| Wang He-song, Yuan Guo, Cao Guang-ming, et al. As-cast microstructures of low-carbon microalloyed steel produced by twin-roll strip casting [J]. Journal of Northeastern University (Natural Science), 2018, 39(4): 497-500. | |
| [25] | Zhang Y S, Li Z L, Tang Y, et al. Research on flow, heat transfer, and solidification characteristics of flow distribution process in the twin-roll casting[J]. International Journal of Thermal Sciences, 2024, 204: 109215. |
| [26] | Zhang Y S, Li Z L, Tang Y, et al. Research on temperature field and thermal deformation characteristics of casting rollers in twin-roll casting process[J]. Applied Thermal Engineering, 2024, 256: 124005. |
| [27] | Zhang Y S, Li Z L, Fang F, et al. Numerical analysis and experimental study on side dam temperature and stress field of two-roll casting[J]. Steel Research International, 2024, 95(5): 2300748. |
| [28] | Zhang Y X, Lan M F, Wang Y, et al. Microstructure and texture evolution of thin-gauge non-oriented silicon steel with high permeability produced by twin-roll strip casting[J]. Materials Characterization, 2019, 150: 118-127. |
| [1] | Bai-ling CHEN, Jin-hui NIU, Lian-guang WANG, Gang XU. Numerical Simulation Analysis of Prefabricated Steel-Tubular and Larsen Steel-Sheet Pile Cofferdam Structure [J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 102-112. |
| [2] | Lian-guang WANG, Ze-jun SHEN, Hai-yang GAO, Yong-chen TONG. Prefabricated Steel Reinforced Concrete Frame Column Steel Plate Shear Wall Connection and Its Finite Element Analysis [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 115-122. |
| [3] | Yi FENG, De-liang ZHANG, Zhi-hui CAI, Guang-jie HUANG. Quasi-Static and Dynamic Deformation Behavior of Fe-11Mn-4Al-0.2C Medium-Mn Steel [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1244-1251. |
| [4] | Yong-yu ZHANG, Kun MA, Yi MIN, Cheng-jun LIU. Effect of Magnesium Treatment on Liquid Precipitation Behavior of TiN [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 967-973. |
| [5] | Feng DAI, Jing-xian LIU. Analysis of the Aging Behavior of Polyester Filter Media for Steel Companies in a Composite Environment [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 883-889. |
| [6] | Jiu-xin ZHANG, Xiao-jian REN, Dong-zheng JIN, Yong TIAN. Effect of Austenite Grain Refinement on Microstructure and Properties of Ultra‑Heavy EH47 Crack Arrest Steel [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 643-651. |
| [7] | Hang SUN, Wei CHEN, Chang LUO, Chang-sheng LIU. Microstructure and Properties of Tempered High Vanadium Semi High Speed Steel Alloy Cladding Layer [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 636-642. |
| [8] | Ting-song YANG, Dun-liang HUANG, Wen-quan SUN, An-rui HE. Thermal-Force Bulging Behavior and Efficient Control Method of Electromagnetic Control Roll [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 660-667. |
| [9] | Chong SHEN, Qing-tian SU, You-sheng CHEN. Mechanical Properties and Reinforcement Method of Misaligned Thick Plate Cross Joints in Steel Bridge [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 729-737. |
| [10] | Jin-zhe JIANG, Yue LIU, Chun-ming LIU. Regulation of Secondary Carbide Characteristics and Its Effect on Wear Resistance of High Carbon High Alloy Martensitic Steel [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 490-498. |
| [11] | Yu-chao YAO, Zhong-qiu LIU, Wen-jie RONG, Bao-kuan LI. Effect of Feeding Steel Strip Carbon Content on Macrosegregation Distribution in Large Continuous Casting Round Bloom [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 499-506. |
| [12] | Jia-qi LIU, Xiao-peng LI, Meng YIN, Sai-nan ZHOU. Vibration Suppression Strategy for Dual-Flexible Servo Drive System in Flexible Manipulator of Variable Length [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 530-539. |
| [13] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
| [14] | Mei-hang LI, Si-yu MIAO, Wei-wei ZHANG, En-zhu HU. Degradation of Butyl Xanthate Using Persulfate Activated with Iron and Steel Metallurgical Slag [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 187-192. |
| [15] | Fa-xing DING, Shu-dong SHU, Jing-ke ZHANG, Chang HE. Mechanical Performance of Open Cross-Section Steel-Concrete Composite Beams Under Pure Torsion [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1485-1493. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||