Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (6): 102-112.DOI: 10.12068/j.issn.1005-3026.2025.20230335
• Resources & Civil Engineering • Previous Articles Next Articles
Bai-ling CHEN, Jin-hui NIU, Lian-guang WANG, Gang XU
Received:
2023-12-15
Online:
2025-06-15
Published:
2025-09-01
CLC Number:
Bai-ling CHEN, Jin-hui NIU, Lian-guang WANG, Gang XU. Numerical Simulation Analysis of Prefabricated Steel-Tubular and Larsen Steel-Sheet Pile Cofferdam Structure[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 102-112.
施工工况 | 深度/m | 施工概况 |
---|---|---|
工况1 | — | 地应力平衡 |
工况2 | 2.0 | 降水至2.0 m深处 |
工况3 | 1.5 | 在1.5 m深处安装第1道支撑 |
工况4 | 5.0 | 降水至5.0 m深处 |
工况5 | 4.5 | 在4.5 m深处安装第2道支撑 |
工况6 | 8.0 | 降水至8.0 m深处 |
工况7 | 7.5 | 在7.5 m深处安装第3道支撑 |
工况8 | 10.0 | 降水至10.0 m深处 |
工况9 | 12.0 | 清淤至12.0 m深处 |
工况10 | 12.0 | 浇筑2.0 m厚封底混凝土 |
Table 1 Working conditions of cofferdam
施工工况 | 深度/m | 施工概况 |
---|---|---|
工况1 | — | 地应力平衡 |
工况2 | 2.0 | 降水至2.0 m深处 |
工况3 | 1.5 | 在1.5 m深处安装第1道支撑 |
工况4 | 5.0 | 降水至5.0 m深处 |
工况5 | 4.5 | 在4.5 m深处安装第2道支撑 |
工况6 | 8.0 | 降水至8.0 m深处 |
工况7 | 7.5 | 在7.5 m深处安装第3道支撑 |
工况8 | 10.0 | 降水至10.0 m深处 |
工况9 | 12.0 | 清淤至12.0 m深处 |
工况10 | 12.0 | 浇筑2.0 m厚封底混凝土 |
[1] | Sadeghi K, Sofy S, Baiz Z. Application of sheet piles in onshore and marine structure[J]. Asian Journal of Natural & Applied Sciences, 2018, 7(1): 10-18. |
[2] | Li P, Sun X F, Chen J J, et al. Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action[J]. Geomechanics and Engineering, 2021, 27(6): 561-571. |
[3] | Xu F, Li S C, Zhang Q Q, et al. Analysis and design implications on stability of cofferdam subjected to water wave action[J]. Marine Georesources & Geotechnology, 2016, 34(2): 181-187. |
[4] | Wang J F, Xiang H W, Yan J G. Numerical simulation of steel sheet pile support structures in foundation pit excavation[J]. International Journal of Geomechanics, 2019, 19(4): 05019002. |
[5] | Jiang Y, Guo F, Wang W L, et al. Stability study of a double-row steel sheet pile cofferdam structure on soft ground[J]. Water, 2023, 15(14): 2643. |
[6] | Qian J C, Zhang J. Monitoring and analysis of horizontal displacement of a single-rowed steel sheet pile cofferdam[J]. Soil Engineering and Foundation, 2020, 34(2): 261-264. |
[7] | 张玉成, 杨光华, 姜燕, 等. 软土地区双排钢板桩围堰支护结构的应用及探讨[J]. 岩土工程学报, 2012, 34(sup1): 659-665. |
Zhang Yu-cheng, Yang Guang-hua, Jiang Yan, et al. Application and discussion of double-row steel sheet pile cofferdam supporting structure in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (sup1): 659-665. | |
[8] | 贺文波. 高深水区钢板桩围堰逆作法施工技术研究[J]. 武汉理工大学学报, 2018, 40(3): 59-64. |
He Wen-bo. Reverse construction technology for steel-sheet-pile cofferdam in high-water area[J]. Journal of Wuhan University of Technology, 2018, 40 (3): 59-64. | |
[9] | Fang M S, Yu L Z, Tan Y. Methods used to construct underwater pile caps on the Hong Kong—Zhuhai—Macao Bridge[J]. Proceedings of the Institution of Civil Engineers:Bridge Engineering. 2021, 174(1): 3-12. |
[10] | He M, Xu Q B, Chen S X. Design and practice of underwater steel pipe pile cofferdam[J]. Science Discovery, 2022, 10 (2): 41-47. |
[11] | Wu J, Zhou Z F, Xia W J, et al. A novel excavation and construction method for an extra-long underwater tunnel in soft soils[J]. Advances in Civil Engineering, 2021, 2021(1): 6184411. |
[12] | Zhu Y, Li X J, Shi Z M, et al. Dynamic behavior of double steel sheet pile cofferdam under different wave actions[J]. IOP Conference Series: Earth and Environmental Science,2021, 861(7): 072019. |
[13] | Ye J B, He X L. Response of dual-row retaining pile walls under surcharge load [J]. Mechanics of Advanced Materials and Structures, 2022, 29(11): 1614-1625. |
[14] | Ti Z L, Qin S Q, Li Y L, et al. Extreme wave monitoring and in situ wave pressure measurement for the cofferdam construction of the pingtan strait bridge[C]// Structures Congress. Denver, 2017: 629-642. |
[15] | Park M C, Lee J S, Kim D, et al. Small-scaled laboratory experiments for dynamic stability monitoring of large circular steel pipe cofferdam of marine bridge foundation[J]. Journal of the Korean Geotechnical Society, 2019, 35(12): 123-134. |
[16] | 魏鹏飞, 刘杰. 软土地基深基础组合结构支护技术研究[J]. 公路, 2019, 64(1): 136-140. |
Wei Peng-fei, Liu Jie. Study on supporting technology of deep foundation composite structure in soft soil foundation[J]. Highway, 2019, 64 (1): 136-140. |
[1] | Hai-yan WANG, Yan FENG, Qing-chao WANG, Wan-chun YU. Mechanical Characteristic Analysis of Carbon Fiber Reinforced Polymer Bolted Joints [J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 71-79. |
[2] | Xiu-li LIN, Min FAN, Jin-shuo YANG, Jing-xian LIU. Characteristics and Measurement of Air Velocity and Particulate Matter Mass Concentration Distribution in Upstream and Downstream of 90° Elbow [J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 113-125. |
[3] | Yu-chao HAN, Qing-hua XIE, Pei-yuan NI, Ying LI. Effect of Swirling-Flow Gas Injection Angle on Multiphase Flow and Mixing Behavior in RH Refining Process [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 16-23. |
[4] | Ke-fan YU, Liang ZHAO, Hui DONG, Yong-qing HE. Effect of Initial Inclination Angle of Elastic Pillars on Heat Transfer Enhancement in Microchannel [J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 42-49. |
[5] | Shu-hong WANG, Ming-zhu REN, Shi-yu LI, Fu-rui DONG. Control of Unequal Strength Grouting Deformation During Close Distance Crossing of an Existing Station [J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 126-135. |
[6] | Xi YUAN, Ming-xu MA, Jie CHEN, Zhe-ying WANG. Numerical Simulation Study on Spindle Cooling Device for Oil-Free Scroll Vacuum Pumps [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 92-98. |
[7] | Zhong-zheng LI, Zhao-xia WU, Jin-yang WANG, Zeng-xin KANG. Numerical Simulation of Mass and Heat Transfer in Iron Ore Sintering Process [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 35-43. |
[8] | Zhi-qun ZHENG, Xian-zhen HUANG, Zhi-yuan JIANG, Xing-lin MIAO. Flow and Heat Transfer Characteristics and Structure Optimization of Helically Corrugated Tubes Based on Kriging Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 992-1001. |
[9] | Jin-rui ZHANG, Xi-wen YAO, Kai-li XU, Xiu SUN. Optimization of CO Sensor Carrying Position of Mine Intelligent Inspection Vehicle [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 721-728. |
[10] | Jin-song ZUO, Yue-zhong DI, Dian-qiao GENG. Numerical Simulation of Multiple Physical Fields for the Preparation of Magnesium Hydroxide by Electrodeposition [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 652-659. |
[11] | Da-xue FU, Yue-zhong DI, Yao-wu WANG. Optimization of Mg Production by Pidgeon Process Based on Heat Transfer in the Bed [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 523-529. |
[12] | Ren WEI, Zhi-jian SU, Yi-da DU, Yan-bin WANG. Numerical Simulation of Molten Steel Flow, Heat Transfer and Solidification in Slab Mold Under Composite Magnetic Field [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 514-522. |
[13] | Gang LI, Lei ZHOU, Xiao-yu ZHANG, Kai ZHANG. Determination Method of Pressure Relief Area for Dust Explosion of Connected Equipment [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 276-281. |
[14] | Yu-meng WANG, Kai GUAN, Wan-cheng ZHU, Hong-lei LIU. Mining-Induced Surrounding Rock Instability and Surface Subsidence Based on Combination of In-situ Monitoring and Numerical Modelling [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 234-243. |
[15] | Bai-ling CHEN, Yue YIN, Hai-yang GAO, Lian-guang WANG. Connection Between Precast Steel-Concrete-Steel Sandwich Slab and Column and Finite Element Analysis [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1476-1484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||