
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 143-153.DOI: 10.12068/j.issn.1005-3026.2025.20249028
• Resources & Civil Engineering • Previous Articles Next Articles
Ying-fang FAN(
), Yu-xuan SU, Qiu-chao LI, Hao CHEN
Received:2024-05-21
Online:2025-11-15
Published:2026-02-07
Contact:
Ying-fang FAN
CLC Number:
Ying-fang FAN, Yu-xuan SU, Qiu-chao LI, Hao CHEN. Electrochemical Experimental Study on Passivation Behavior of Steel Bars Embedded in Fly Ash Cement Paste[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 143-153.
| 材料 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | Na2O | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| 水泥 | 59.30 | 21.91 | 6.27 | 1.64 | 3.78 | 2.41 | — | — | 4.69 |
| FA | 4.78 | 49.89 | 34.81 | 1.28 | 2.17 | 1.10 | 2.97 | 1.25 | 1.75 |
Table 1 Chemical composition of cement and FA(mass fraction)
| 材料 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | Na2O | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| 水泥 | 59.30 | 21.91 | 6.27 | 1.64 | 3.78 | 2.41 | — | — | 4.69 |
| FA | 4.78 | 49.89 | 34.81 | 1.28 | 2.17 | 1.10 | 2.97 | 1.25 | 1.75 |
试件 编号 | FA | OPC | FAC 10 | FAC 20 | FAC 30 | FAC 40 |
|---|---|---|---|---|---|---|
| pH值 | 10.13 | 13.11 | 13.06 | 13.04 | 13.01 | 12.99 |
Table 2 pH of FA cement paste
试件 编号 | FA | OPC | FAC 10 | FAC 20 | FAC 30 | FAC 40 |
|---|---|---|---|---|---|---|
| pH值 | 10.13 | 13.11 | 13.06 | 13.04 | 13.01 | 12.99 |
| 龄期/d | OPC | FAC10 | FAC20 | FAC30 | FAC40 |
|---|---|---|---|---|---|
| 1 | 3.59×10-4 | 9.80×10-5 | 6.80×10-4 | 1.00×10-4 | 1.74×10-4 |
| 7 | 2.34×10-4 | 7.41×10-4 | 6.72×10-4 | 2.18×10-4 | 5.78×10-4 |
Table 3 Chi-square results by equivalent circuit simulation
| 龄期/d | OPC | FAC10 | FAC20 | FAC30 | FAC40 |
|---|---|---|---|---|---|
| 1 | 3.59×10-4 | 9.80×10-5 | 6.80×10-4 | 1.00×10-4 | 1.74×10-4 |
| 7 | 2.34×10-4 | 7.41×10-4 | 6.72×10-4 | 2.18×10-4 | 5.78×10-4 |
| 试件编号 | 龄期/d | Y0·10-2/(kΩ-1·cm-2·s | n |
|---|---|---|---|
| OPC | 1 | 4.02 | 0.91 |
| 7 | 3.22 | 0.94 | |
| FAC10 | 1 | 4.09 | 0.91 |
| 7 | 3.59 | 0.93 | |
| FAC20 | 1 | 4.10 | 0.90 |
| 7 | 3.29 | 0.93 | |
| FAC30 | 1 | 4.66 | 0.93 |
| 7 | 3.49 | 0.94 | |
| FAC40 | 1 | 4.43 | 0.90 |
| 7 | 3.94 | 0.95 |
Table 4 Parameter values of equivalent circuit
| 试件编号 | 龄期/d | Y0·10-2/(kΩ-1·cm-2·s | n |
|---|---|---|---|
| OPC | 1 | 4.02 | 0.91 |
| 7 | 3.22 | 0.94 | |
| FAC10 | 1 | 4.09 | 0.91 |
| 7 | 3.59 | 0.93 | |
| FAC20 | 1 | 4.10 | 0.90 |
| 7 | 3.29 | 0.93 | |
| FAC30 | 1 | 4.66 | 0.93 |
| 7 | 3.49 | 0.94 | |
| FAC40 | 1 | 4.43 | 0.90 |
| 7 | 3.94 | 0.95 |
| [1] | Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58: 159-167. |
| [2] | Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement and Concrete Research, 2007, 37(7): 1127-1133. |
| [3] | Rangel C M, Silva T M, da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochimica Acta, 2005, 50(25/26): 5076-5082. |
| [4] | Hakiki N E, Da Cunha Belo M. Electronic structure of passive films formed on molybdenum-containing ferritic stainless steels[J]. Journal of the Electrochemical Society, 1996, 143(10): 3088-3094. |
| [5] | 李彩亭,曾光明,林玉鹏.粉煤灰活化试验研究[J].湖南大学学报(自然科学版), 2002, 29(1): 93-97. |
| Li Cai-ting, Zeng Guang-ming, Lin Yu-peng. Test study on activation of fly ash[J]. Journal of Hunan University (Natural Science), 2002, 29(1): 93-97. | |
| [6] | Behera S K, Mishra D P, Singh P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. |
| [7] | Mundra S, Criado M, Bernal S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes[J]. Cement and Concrete Research, 2017, 100: 385-397. |
| [8] | Miranda J M, Fernández-Jiménez A, González J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research, 2005, 35(6): 1210-1217. |
| [9] | Koga G Y, Albert B, Roche V, et al. A comparative study of mild steel passivation embedded in Belite-Ye’elimite-ferrite and Porland cement mortars[J]. Electrochimica Acta, 2018, 261: 66-77. |
| [10] | Harilal M, Kamde D K, Uthaman S, et al. The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor[J]. Construction and Building Materials, 2021, 274: 122097. |
| [11] | Zheng H B, Dai J G, Poon C S, et al. Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J]. Cement and Concrete Research, 2018, 108: 46-58. |
| [12] | Wei J G, Chen R, Huang W, et al. Effect of endogenous chloride ion content and mineral admixtures on the passivation behavior of reinforcement embedded in sea-sand ultra-high performance concrete matrix[J]. Construction and Building Materials, 2022, 321: 126402. |
| [13] | Yao N, Zhou X C, Liu Y Q, et al. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions[J]. Cement and Concrete Composites, 2022, 132: 104637. |
| [14] | Geng Z, Yao N, Zhou X C, et al. Understanding the intrinsic effect of fly ash on passivity and chloride-induced corrosion of carbon steel and stainless steel in cement extract solutions[J]. Cement and Concrete Composites, 2023, 143: 105236. |
| [15] | 史先飞,陈晓华,满成.HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J].中国腐蚀与防护学报,2024, 44(5): 1213-1222. |
| Shi Xian-fei, Chen Xiao-hua, Man Cheng. Natural passivation behavior and corrosion resistance of HRB400 steel in simulated concrete pore solution[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(5): 1213-1222. | |
| [16] | Society for Testing and Materials. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete: [S]. United States of America: ASTM International, 2009. |
| [17] | Jin Z Q, Zhao X, Du Y J, et al. Comprehensive properties of passive film formed in simulated pore solution of alkali-activated concrete[J].Construction and Building Materials, 2022, 319: 126142. |
| [18] | Gray J J, Orme C A. Electrochemical impedance spectroscopy study of the passive films of alloy 22 in low pH nitrate and chloride environments[J]. Electrochimica Acta, 2007, 52(7): 2370-2375. |
| [19] | Rizwan Hussain R, Alhozaimy A M, Al-Negheimish A. Role of scoria natural pozzolan in the passive film development for steel rebars in chloride-contaminated concrete environment[J]. Construction and Building Materials, 2022, 357: 129335. |
| [20] | 王潇舷,刘加平,穆松,等.混凝土环境中β-甘油磷酸钠影响钢筋阻锈行为研究[J].华南理工大学学报(自然科学版),2024, 52(3):28-40. |
| Wang Xiao-xian, Liu Jia-ping, Mu Song, et al. Study on sodium β-glycerophosphate in concrete affects the inhibited behavior of steel bar[J]. Journal of South China University of Technology (Natural Science Edition),2024, 52(3): 28-40. | |
| [21] | Wang X H, Chen B, Gao Y, et al. Influence of external loading and loading type on corrosion behavior of RC beams with epoxy-coated reinforcements[J]. Construction and Building Materials, 2015, 93: 746-765. |
| [22] | Ababneh A, Sheban M. Impact of mechanical loading on the corrosion of steel reinforcement in concrete structures[J]. Materials and Structures, 2011, 44(6): 1123‒1137. |
| [23] | Monticelli C, Natali M E, Balbo A, et al. Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization[J]. Cement and Concrete Research, 2016, 80: 60-68. |
| [24] | Tan Y S, Yu H F, Bi W L, et al. Hydration behavior of magnesium oxysulfate cement with fly ash via electrochemical impedance spectroscopy[J].Journal of Materials in Civil Engineering, 2019,31(10): 04019237. |
| [25] | Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores[J]. Electrochimica Acta, 2007, 52(27): 7634-7641. |
| [26] | Liu G J, Zhang Y S, Wu M, et al. Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits[J]. Construction and Building Materials, 2017,157: 357-362. |
| [27] | Lin K Q, Zheng T. Long-term corrosion behavior of low carbon steel bars embedded in building concrete: effect of silica fume and dolomite powder as partial replacements of Portland cement[J]. International Journal of Electrochemical Science, 2020, 15(12): 12329-12338. |
| [28] | 刘国建, 朱航, 张云升, 等. 混凝土孔溶液中不同侵蚀离子对钢筋的腐蚀行为[J]. 硅酸盐学报, 2022, 50(2): 413-419. |
| Liu Guo-jian, Zhu Hang, Zhang Yun-sheng, et al. Corrosion behavior of steel subjected to different corrosive ions in simulated concrete pore solution[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 413-419. | |
| [29] | Rosalbino F, Scavino G, Ubertalli G. Electrochemical corrosion behavior of LDX 2101® duplex stainless steel in a fluoride-containing environment[J].Materials and Corrosion, 2020,71(12): 2021-2028. |
| [30] | 乔宏霞,刘志超,路承功,等.碳化环境下多元胶凝体系钢筋混凝土电化学特性[J].湖南大学学报(自然科学版). 2023, 50(3): 110-120. |
| Qiao Hong-xia, Liu Zhi-chao, Lu Cheng-gong, et al. Electrochemical characteristics of reinforced concrete with multiple cementitious system in carbonization environment[J]. Journal of Hunan University (Natural Sciences), 2023, 50(3): 110-120. | |
| [31] | Huang T J, Yuan Q, Zuo S H, et al. Evaluation of microstructural changes in fresh cement paste using AC impedance spectroscopy vs. oscillation rheology and 1H NMR relaxometry[J].Cement and Concrete Research, 2021,149: 106556. |
| [32] | 席翔,储洪强,冉千平,等. 通用硅酸盐水泥基材料低频介电性能的研究进展[J].硅酸盐学报, 2023, 51(8): 2074-2089. |
| Xi Xiang, Chu Hong-qiang, Ran Qian-ping, et al. Low-frequency dielectric behavior of common Portland cement-based materials: a review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2074-2089. | |
| [33] | Wang D Q, Liu Z C, Zhi X, et al. Passivation of mild steel embedded in low-heat Portland cement: a comparative study with ordinary Portland cement[J]. Cement and Concrete Composites, 2024, 146: 105389. |
| [34] | 崔丽君,乔宏霞,曹锋,等.青稞秸秆灰改性氯氧镁水泥砂浆防护钢筋混凝土的损伤特性[J].硅酸盐通报,2024, 43(9): 3282-3293.. |
| Cui Li-jun, Qiao Hong-xia, Cao Feng, et al. Damage characteristics of highland barley straw ash modified magnesium oxychloride cement mortar protected reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3282-3293. | |
| [35] | Pech-Canul M A, Castro P. Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research, 2002, 32(3): 491-498. |
| [1] | Ying WANG, Xiao-wei GU, Xiao-chuan XU, Qing WANG. Hydration Characteristics of Slag-Fly Ash Cementitious System Activated by Lime-Sodium Sulfate Composite [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 87-96. |
| [2] | LYU Chao, LIU Jing-xian, SUN Xi, YU Zhen-hui. Enhancement of Filtration Performance of Fibrous Filter for Unipolarly Charged Coal-Fired Fly Ash [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1335-1340. |
| [3] | LIU Fang, LI Zhuo, SU Wei-xing, LIU Yang. Sliding Mode Observer of Lithium Battery SOC Based on Order Adaptive AR Equivalent Circuit Model [J]. Journal of Northeastern University(Natural Science), 2021, 42(10): 1376-1385. |
| [4] | GONG Yan-bing, SUN Jun-min, ZHANG Ting-an, LYU Guo-zhi. Alkali Recovery from the Bayer Leaching Slag of High Alumina Fly Ash [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 345-350. |
| [5] | LIN Xin, LIU Fang, HU Xiao-min. Influence of Acid and Alkali Modified Fly Ash on Handling Ammonia Nitrogen Wastewater by SBR Reactor [J]. Journal of Northeastern University Natural Science, 2018, 39(12): 1783-1787. |
| [6] | WEN Chen, XU Guang-xing, FAN Li-wei, CHEN Ya-zheng. Electrochemical Corrosion Behaviors of 20Cr9Ni5Co14 Stainless Steels in NaCl Solution [J]. Journal of Northeastern University Natural Science, 2015, 36(6): 819-823. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||