
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 66-72.DOI: 10.12068/j.issn.1005-3026.2025.20240111
• Materials & Metallurgy • Previous Articles Next Articles
Guo-peng ZHANG1, Feng-man SHEN1(
), Wei-ling ZHANG1,2, Hai-yan ZHENG1
Received:2024-05-14
Online:2025-11-15
Published:2026-02-07
Contact:
Feng-man SHEN
CLC Number:
Guo-peng ZHANG, Feng-man SHEN, Wei-ling ZHANG, Hai-yan ZHENG. Research on Mechanism and Influencing Factors of TiO2 Carbothermal Reduction[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 66-72.
| 样品编号 | 成分组成 | 配比 |
|---|---|---|
| TSM1 | TiO2+石墨 | 1∶3.3 |
| TJT2 | TiO2+焦炭 | 1∶3.3 |
| TYM3 | TiO2+烟煤 | 1∶3.3 |
| TWYM4 | TiO2+无烟煤 | 1∶3.3 |
Table 1 Composition ratios of test samples
| 样品编号 | 成分组成 | 配比 |
|---|---|---|
| TSM1 | TiO2+石墨 | 1∶3.3 |
| TJT2 | TiO2+焦炭 | 1∶3.3 |
| TYM3 | TiO2+烟煤 | 1∶3.3 |
| TWYM4 | TiO2+无烟煤 | 1∶3.3 |
| [1] | Chen D S, Song B, Wang L N, et al. Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal[J]. Minerals Engineering, 2011, 24(8):864-869. |
| [2] | Zhang L, Zhang L N, Wang M Y, et al. Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions[J]. Journal of Non-Crystalline Solids, 2007, 353(22/23):2214-2220. |
| [3] | Pang Z D, Jiang Y Y, Ling J W, et al. Blast furnace ironmaking process with super high TiO2 in the slag: density and surface tension of the slag[J]. International Journal of Minerals, Metallurgy and Materials, 2022,29(6):1170-1178. |
| [4] | Valighazvini F, Rashchi F, Khayyam Nekouei R. Recovery of titanium from blast furnace slag[J]. Industrial & Engineering Chemistry Research, 2013, 52(4):1723-1730. |
| [5] | Yuan Z F, Wang X Q, Xu C, et al. A new process for comprehensive utilization of complex titania ore[J]. Minerals Engineering, 2006, 19(9):975-978. |
| [6] | Saito N, Hori N, Nakashima K, et al. Viscosity of blast furnace type slags[J]. Metallurgical and Materials Transactions B, 2003, 34(5):509-516. |
| [7] | Zheng H Y, Zhou S F, Zhang S, et al. Viscosity estimation of TiO2-bearing blast furnace slag with high Al2O3 at 1 500 oC[J]. Metals, 2023, 13(3):573. |
| [8] | Shankar A, Görnerup M, Seetharaman S, et al. Sulfide capacity of high alumina blast furnace slags[J]. Metallurgical and Materials Transactions B, 2006, 37(6):941-947. |
| [9] | Sohn I, Wang W L, Matsuura H, et al. Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO[J]. ISIJ International, 2012, 52(1):158-160. |
| [10] | Zheng H Y, Zhou X R, Hu X G, et al. Desulphurisation behaviour of blast furnace slag with high Al2O3 content at 1823 K[J]. Ironmaking & Steelmaking, 2022,49(6):596-603. |
| [11] | Gao K, Jiao K X, Zhang J L, et al. Dissection investigation of forming process of titanium compounds layer in the blast furnace hearth[J]. ISIJ International, 2020, 60(11): 2385-2391. |
| [12] | Qiu G B, Ma S W, Deng Q Y, et al. Study on the formation of Ti(C,N) between blast furnace hot metal and slag bearing high TiO2 [J]. Metalurgia International, 2012, 17(4): 94-99. |
| [13] | Narita K, Maekawa M, Onoye T, et al. Formation of titanium compounds, so-called titanium bear, in the blast furnace hearth[J]. Transactions of the Iron and Steel Institute of Japan, 1977, 17(8):459-468. |
| [14] | Zhen Y L, Zhang G H, Chou K C. Carbothermic reduction of titanium-bearing blast furnace slag[J]. High Temperature Materials and Processes, 2016, 35(3): 309-319. |
| [15] | 张建良,焦克新,刘征建,等.长寿高炉炉缸保护层综合调控技术[J].钢铁,2017, 52(12):1-7. |
| Zhang Jian-liang, Jiao Ke-xin, Liu Zheng-jian, et al. Comprehensive regulation technology for hearth protective layer of blast furnace longevity[J]. Iron and Steel, 2017, 52(12):1-7. | |
| [16] | 赵永彬,张建良,宁晓钧,等.低钛高炉渣中Ti(C,N)形成的研究[J].钢铁钒钛,2014, 35(1):79-84. |
| Zhao Yong-bin, Zhang Jian-liang, Ning Xiao-jun, et al. Study on the formation of Ti(C,N) in low TiO2 content blast furnace slag[J]. Iron Steel Vanadium Titanium, 2014, 35(1):79-84. | |
| [17] | 高运明,李慈颖,李亚伟,等.TiO2碳热还原与高炉钛渣提取碳氮化钛分析[J].武汉科技大学学报(自然科学版),2007, 30(1):5-9. |
| Gao Yun-ming, Li Ci-ying, Li Ya-wei, et al. Analysis of carbothermal reduction of TiO2 and extraction of titanium carbonitride from the blast furnace slag bearing titania[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition),2007, 30(1):5-9. | |
| [18] | Wang Y Z, Zhang J L, Liu Z J, et al. Carbothermic reduction reactions at the metal-slag interface in Ti-bearing slag from a blast furnace[J]. JOM, 2017, 69(11):2397-2403. |
| [19] | Jiao K X, Zhang J L, Hou Q F, et al. Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction[J]. Steel Research International, 2017,88(9): 1600475. |
| [20] | Jiao K X, Zhang J L, Liu Z J, et al. Dissection investigation of Ti(C, N) behavior in blast furnace hearth during vanadium titano-magnetite smelting[J]. ISIJ International, 2017, 57(1): 48-54. |
| [21] | 詹星.小高炉冶炼钒钛磁铁矿解剖研究[J].钢铁钒钛,1984, 5(2):3-15. |
| Zhan Xing. Anatomical study on smelting vanadium-titanium magnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984, 5(2):3-15. | |
| [22] | 郑常乐,邵球军,张建良,等.富氧率对钒钛磁铁矿球团还原行为的影响[J].东北大学学报(自然科学版),2016, 37(2): 198-202, 212. |
| Zheng Chang-le, Shao Qiu-jun, Zhang Jian-liang, et al. Influence of oxygen enrichment rate on reduction behavior of titanomagnetite pellets[J]. Journal of Northeastern University (Natural Science),2016, 37(2): 198-202, 212. | |
| [23] | 焦克新,张建良,刘征建,等.高炉炉缸含钛保护层物相及TiC0.3N0.7形成机理[J].工程科学学报,2019, 41(2):190-198. |
| Jiao Ke-xin, Zhang Jian-liang, Liu Zheng-jian, et al. Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth[J]. Chinese Journal of Engineering, 2019, 41(2):190-198. | |
| [24] | 焦克新,张建良,左海滨,等.高炉炉缸黏滞层物相及形成机理[J].东北大学学报(自然科学版),2014, 35(7):987-991. |
| Jiao Ke-xin, Zhang Jian-liang, Zuo Hai-bin, et al. Composition and formation mechanism of viscous layers in blast furnace hearth[J]. Journal of Northeastern University (Natural Science), 2014, 35(7):987-991. | |
| [25] | Wada H, Pehlke R D. Nitrogen solubility and nitride formation in austenitic Fe-Ti alloys[J]. Metallurgical Transactions B, 1985, 16(4): 815-822. |
| [26] | Ozturk B, Fruehan R J. Thermodynamics of inclusion formation in Fe-Ti-C-N alloys[J]. Metallurgical Transactions B, 1990, 21(5): 879-884. |
| [27] | Li Y, Li Y Q, Fruehan R J. Formation of titanium carbonitride from hot metal[J]. ISIJ International, 2001,41(12):1417-1422. |
| [28] | Xiang D W, Shen F M, Jiang X, et al. Pyrolysis characteristics of industrial lignin for use as a reductant and an energy source for future iron making[J]. ACS Omega, 2021,6(5): 3578-3586. |
| [29] | Lyu T T, Hu T, Tian F. Hydrogen-enhanced carbothermal reduction for the synthesis of TiC from TiO2 [J]. Journal of Alloys and Compounds, 2025, 1039: 183002. |
| [30] | Tang S Y, Song G Q, Guo J J, et al. Oxidation behavior of TiC and TiCN and their potential photocatalytic activity in semi-oxidized state[J]. Nanoscale Advances, 2025,7(16): 5031-5041. |
| [31] | Chen M, Chen B X, Jiang Y, et al. Study of Ti(C,N) formations in TiO2-containing slags[J]. Metallurgical and Materials Transactions B, 2025, 56(1): 1018-1028. |
| [32] | Sui J H, Yang S T, Wang Q, et al. Influence of blast furnace burden with different TiO2 contents on the process of reduction and slag formation in cohesive zone[J]. ISIJ International, 2025,65(4): 521-532. |
| [33] | Zhang S S, Zhang J L, Wang Z Y, et al. Advancements in oxygen blast furnace technology and its application in the smelting of vanadium-titanium magnetite: a comprehensive review[J]. Minerals Engineering, 2024, 212: 108732. |
| [34] | Huang Y, Zhang Z D, Tang J, et al. Mathematical simulation on smelting vanadium-bearing titanomagnetite by oxygen blast furnace[J]. ISIJ International, 2025,65(11): 1690-1700. |
| [35] | Chen B X, Chen M, Zhang K X, et al. Metallurgical properties of vanadium titanomagnetite sinter in the cohesive zone of H2-rich oxygen blast furnace[J]. Metallurgical and Materials Transactions B, 2025: 1-12. |
| [36] | Qu Y X, Xing L, Gao M L, et al. Progress and prospects for titanium extraction from titanium-bearing blast furnace slag[J]. Materials, 2024, 17(24): 6291. |
| [37] | Zheng K, Wang W, Huang T, et al. Influence of temperature and slag composition on wetting behavior of titanium-containing blast furnace slag and tuyere coke[J]. Journal of Iron and Steel Research International, 2025,32(10): 3298-3307. |
| [1] | Xiao-zhou CAO, Sheng-qi SHAO, Hong-rui YUE. Diffusion Reaction Characteristics of Calcium Ferrite and TiO2 [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 193-200. |
| [2] | ZHANG Li-heng, GAO Zi-xian, TANG Wei-dong, XUE Xiang-xin. Effect of TiO2 Content on Metallurgy Performance of High-Chromium Vanadium-Titanium Magnetite Sinter [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1667-1672. |
| [3] | BIAN Xue, HU Lyu, PENG Peng, LIU Si-yang. Preparation and Properties of xCeO2-yWO3-TiO2 Denitration Catalyst [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1716-1720. |
| [4] | JIANG Ting-ting, SHI Yong, KE Jun, XU Kai-li. TiO2 Photocatalyst Modified by Carbon Quantum Dots and Its Activity in Pollutants Degradation [J]. Journal of Northeastern University Natural Science, 2018, 39(1): 138-142. |
| [5] | LI Wei, FU Gui-qin, CHU Man-sheng, ZHU Miao-yong. Phase Transformation and Non-isothermal Oxidation Kinetics of Hongge Vanadium-Bearing Titanomagnetite [J]. Journal of Northeastern University Natural Science, 2017, 38(4): 517-521. |
| [6] | WANG Yan-xiu, ZHANG Ting-an, LYU Guo-zhi, ZHU Xiao-feng. Reaction Behaviors of CaO-TiO2-SiO2-NaAlO2 System [J]. Journal of Northeastern University Natural Science, 2015, 36(5): 685-689. |
| [7] | SUN Yu, DONG Yue, ZHENG Hai-yan, SHEN Feng-man. Experimental Study on Direction Reduction of Vanadium-Bearing Titanomagnetite [J]. Journal of Northeastern University Natural Science, 2015, 36(1): 63-67. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||