SHA Cheng-man, BIAN Dan, YANG Dong-mei. Application of Simplex Particle Swarm Optimization Algorithm in Determining the Minimum Factor of Safety of Embankment[J]. Journal of Northeastern University Natural Science, 2016, 37(6): 890-894.
[1]中华人民共和国住房和城乡建设部.建筑基坑支护技术规程[M].北京:建筑工业出版社,2012.(Ministry of Housing and Urban-Rural Construction of the People’s Republic of China.Technical specification for retaining and protection of building foundation excavation[M].Beijing:China Architecture & Building Press,2012.) [2]Kenney J,Eberhart R C.Particle swarm optimization[C]//IEEE International Conference on Neural Network.Perth:IEEE Service Center,1995:1942-1948. [3]Yang B,Bletzinger K U,Zhang Q,et al.Frame structural sizing and topological optimization via a parallel implementation of a modified particle Swarm algorithm[J].KSCE Journal of Civil Engineering,2013,17(6):1359-1370. [4]Xiao H F,Tan G Z.A novel particle swarm optimizer without velocity:simplex-PSO[J].Journal of Central South University of Technology, 2010,17(2):349-356. [5]崔志华,曾建潮.微粒群优化算法[M].北京:科学出版社,2011.(Cui Zhi-hua,Zeng Jian-chao.Particle swarm optimization[M].Beijing:Science Press,2011.) [6]江维,沈斌,胡中功.微粒群算法参数的理论分析[J].化工自动化及仪表,2009,36(4):38-40.(Jiang Wei,Shen Bin,Hu Zhong-gong.The parameters theoretical analysis of particle swarm optimization algorithm[J].Control and Instruments in Chemical Industry,2009,36(4):38-40.) [7]Shi Y H,Eberhart R C.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation. Anchorage,1998:785-791. [8]Zhang P,Wei P.Simplex particle swarm optimization for block matching algorithm[C]//Intelligent Signal Processing and Communication Systems.Chengdu,2010:1-4. [9]Xiong Q,Arthur J.Continuous optimazation using a dynamic simplex method[J].Chemical Engineering Science,2003,58(16):3817-3828. [10]Cho H,Kim D,Olivera F,et al.Enhanced speciation in particle swarm optimization for multi-modal problems[J].European Journal of Operational Research,2011,213(1):15-23.(上接第889页)时更加均匀,净化装置附近温度更加接近房间顶部的温度.使得净化间温度可达到防冻要求,保障了生物质气化站在沈阳地区冬季极寒条件下的安全运行.4结论1) 本文提出了一种利用轴流风机与套管将生物质气化站气化间内气化反应产生的余热送入净化间进行采暖的方法.并采用CFD计算软件Fluent对采暖后净化间内的温度场进行模拟,预测了采暖后净化间内的温度分布,对为解决我国北方地区生物质气化站冬季防冻问题提供了一种可行性方案.2) 当进气口管径为0.1m,风速为10m/s时,采暖后的净化间内温度可由243.15K提高至254K以上;若对净化间的外墙、门、房顶采取保温措施可使温度进一步提高到278K以上,达到防冻要求.采用本方案进行采暖要同时考虑房屋的保温性能才可使最终采暖效果达到防冻要求.