东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (12): 1787-1797.DOI: 10.12068/j.issn.1005-3026.2024.12.014
• 资源与土木工程 • 上一篇
收稿日期:
2023-07-03
出版日期:
2024-12-10
发布日期:
2025-03-18
通讯作者:
丁发兴
作者简介:
丁发兴(1979-),男,浙江瑞安人,中南大学教授,博士生导师.
基金资助:
Fa-xing DING(), Kai-yuan LUO, Jian-xiong LEI, Fei LYU
Received:
2023-07-03
Online:
2024-12-10
Published:
2025-03-18
Contact:
Fa-xing DING
摘要:
对9个钢管混凝土(concrete‑filled steel tubular,CFST)柱-组合梁单边螺栓节点开展三维实体有限元精细化模型抗震性能分析,其中采用混凝土三轴塑性-损伤和钢材混合强化-韧性损伤模型,探讨了拉筋、轴压比、梁高、加劲肋对节点抗震性能与破坏形式的影响规律,结果表明钢材引入韧性损伤的有限元模型分析结果与试验结果更加吻合,且增加端板加劲肋和增大钢梁高度均能大幅提高节点刚度、承载力和耗能能力.探究不同钢梁尺寸和柱内拉筋强构造对钢管混凝土柱-组合梁单边螺栓节点承载力、刚度和塑性耗能分配与失效机制的影响规律.分析结果表明:拉筋大幅提升了柱端抗弯承载力和耗能能力,使得节点在轴压比为0.8时仍维持梁端失效模式;节点梁-柱抗弯承载力比介于1.57~2.04时将由梁耗能向柱耗能转变.因此对于栓连螺栓组合节点强柱弱梁的判定,建议梁-柱抗弯承载力比值由1.0提升至1.5.
中图分类号:
丁发兴, 罗开源, 雷建雄, 吕飞. 高轴压比CFST柱-组合梁单边螺栓节点抗震性能分析[J]. 东北大学学报(自然科学版), 2024, 45(12): 1787-1797.
Fa-xing DING, Kai-yuan LUO, Jian-xiong LEI, Fei LYU. Seismic Behavior Analysis of Single Side Bolt Joint of CFST Column-Composite Beam Under High Axial Compression[J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1787-1797.
试件编码 | 方钢管规格 | 加劲肋 | 拉筋 | n | 主梁截面尺寸/mm | 板内钢筋间距s/mm | 楼板厚度/mm |
---|---|---|---|---|---|---|---|
J1-LS1 | 250×3 | 无 | 无 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS2 | 250×3 | 有 | 无 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS3 | 250×3 | 有 | 有 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS4 | 250×3 | 有 | 有 | 0.2 | 250×125×6×9 | 150 | 60 |
J2-LS1 | 250×3 | 有 | 有 | 0.6 | 194×125×6×9 | 150 | 60 |
J2-LS2 | 250×3 | 无 | 有 | 0.6 | 194×125×6×9 | 150 | 60 |
J2-LS3 | 250×3 | 有 | 无 | 0.6 | 194×125×6×9 | 150 | 60 |
J3-LS1 | 250×3 | 有 | 有 | 0.8 | 194×125×6×9 | 150 | 60 |
J3-LS2 | 250×3 | 有 | 无 | 0.8 | 194×125×6×9 | 150 | 60 |
表1 试件主要参数
Table 1 Main parameters of specimens
试件编码 | 方钢管规格 | 加劲肋 | 拉筋 | n | 主梁截面尺寸/mm | 板内钢筋间距s/mm | 楼板厚度/mm |
---|---|---|---|---|---|---|---|
J1-LS1 | 250×3 | 无 | 无 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS2 | 250×3 | 有 | 无 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS3 | 250×3 | 有 | 有 | 0.2 | 194×125×6×9 | 150 | 60 |
J1-LS4 | 250×3 | 有 | 有 | 0.2 | 250×125×6×9 | 150 | 60 |
J2-LS1 | 250×3 | 有 | 有 | 0.6 | 194×125×6×9 | 150 | 60 |
J2-LS2 | 250×3 | 无 | 有 | 0.6 | 194×125×6×9 | 150 | 60 |
J2-LS3 | 250×3 | 有 | 无 | 0.6 | 194×125×6×9 | 150 | 60 |
J3-LS1 | 250×3 | 有 | 有 | 0.8 | 194×125×6×9 | 150 | 60 |
J3-LS2 | 250×3 | 有 | 无 | 0.8 | 194×125×6×9 | 150 | 60 |
试件分组 | t或d或D/mm | fy/MPa | fu/MPa | Es/(N·mm-2) | δ/% |
---|---|---|---|---|---|
钢管 | 3 | 305.68 | 410.47 | 2.08×105 | 29.2 |
螺栓垫板 | 8 | 298.97 | 405.35 | 2.09×105 | 30.9 |
柱内隔板 | 4 | 301.87 | 395.56 | 2.06×105 | 28.7 |
主梁翼缘 | 9 | 296.96 | 446.63 | 2.05×105 | 29.1 |
主梁腹板 | 6 | 297.87 | 428.51 | 2.03×105 | 30.0 |
次梁翼缘 | 8 | 279.79 | 410.97 | 2.08×105 | 27.5 |
次梁腹板 | 6 | 278.63 | 409.89 | 2.06×105 | 25.0 |
端板 | 16 | 311.61 | 416.42 | 1.98×105 | 29.8 |
加劲肋 | 8 | 294.82 | 399.87 | 1.98×105 | 28.3 |
加强环板 | 9 | 304.56 | 429.84 | 2.02×105 | 29.6 |
钢筋 | 10 | 406.54 | 537.62 | 2.04×105 | 24.3 |
表2 钢材性能
Table 2 Properties of steel
试件分组 | t或d或D/mm | fy/MPa | fu/MPa | Es/(N·mm-2) | δ/% |
---|---|---|---|---|---|
钢管 | 3 | 305.68 | 410.47 | 2.08×105 | 29.2 |
螺栓垫板 | 8 | 298.97 | 405.35 | 2.09×105 | 30.9 |
柱内隔板 | 4 | 301.87 | 395.56 | 2.06×105 | 28.7 |
主梁翼缘 | 9 | 296.96 | 446.63 | 2.05×105 | 29.1 |
主梁腹板 | 6 | 297.87 | 428.51 | 2.03×105 | 30.0 |
次梁翼缘 | 8 | 279.79 | 410.97 | 2.08×105 | 27.5 |
次梁腹板 | 6 | 278.63 | 409.89 | 2.06×105 | 25.0 |
端板 | 16 | 311.61 | 416.42 | 1.98×105 | 29.8 |
加劲肋 | 8 | 294.82 | 399.87 | 1.98×105 | 28.3 |
加强环板 | 9 | 304.56 | 429.84 | 2.02×105 | 29.6 |
钢筋 | 10 | 406.54 | 537.62 | 2.04×105 | 24.3 |
图3 弯矩-转角滞回曲线(a)—J1-LS1; (b)—J1-LS2; (c)—J1-LS3; (d)—J1-LS4; (e)—J2-LS1;(f)—J2-LS2; (g)—J2-LS3; (h)—J3-LS1; (i)—J3-LS2.
Fig.3 Moment-rotation hysteresis curves
分组 | 试件编码 | d/mm | 钢梁高度/mm | 加劲肋 | 拉筋高度h1/mm | n | 拉筋 | ρsa/% | ki | km | kl |
---|---|---|---|---|---|---|---|---|---|---|---|
第 1 组 | J1-LS1 | — | 194 | 无 | — | 0.2 | 无 | — | 1.63 | 0.65 | 1.30 |
GLS1 | — | 194 | 有 | — | 0.2 | 无 | — | 1.88 | 0.79 | 1.50 | |
GLS2 | 8 | 194 | 有 | 200 | 0.2 | 有 | 0.57 | 1.84 | 0.73 | 1.47 | |
GLS3 | 10 | 194 | 有 | 200 | 0.2 | 有 | 0.90 | 1.67 | 0.70 | 1.33 | |
GLS4 | 12 | 194 | 有 | 200 | 0.2 | 有 | 1.29 | 1.57 | 0.65 | 1.25 | |
GLS5 | — | 250 | 无 | — | 0.2 | 无 | — | 2.09 | 0.87 | 1.67 | |
GLS6 | 8 | 250 | 无 | 200 | 0.2 | 有 | 0.57 | 2.05 | 0.81 | 1.64 | |
CLS7 | 10 | 250 | 无 | 200 | 0.2 | 有 | 0.90 | 1.85 | 0.77 | 1.48 | |
CLS8 | 12 | 250 | 无 | 200 | 0.2 | 有 | 1.29 | 1.74 | 0.72 | 1.39 | |
第 2 组 | J1-LS1 | — | 194 | 无 | — | 0.4 | 无 | — | 1.68 | 0.72 | 1.34 |
GLS1 | — | 194 | 有 | — | 0.4 | 无 | — | 1.94 | 0.88 | 1.55 | |
GLS2 | 8 | 194 | 有 | 300 | 0.4 | 有 | 0.86 | 1.67 | 0.81 | 1.33 | |
GLS3 | 10 | 194 | 有 | 300 | 0.4 | 有 | 1.35 | 1.57 | 0.77 | 1.25 | |
GLS4 | 12 | 194 | 有 | 300 | 0.4 | 有 | 2.08 | 1.54 | 0.67 | 1.23 | |
GLS5 | — | 250 | 无 | — | 0.4 | 无 | — | 2.15 | 0.97 | 1.72 | |
GLS6 | 8 | 250 | 无 | 300 | 0.4 | 有 | 0.86 | 1.85 | 0.90 | 1.48 | |
CLS7 | 10 | 250 | 无 | 300 | 0.4 | 有 | 1.35 | 1.74 | 0.85 | 1.39 | |
CLS8 | 12 | 250 | 无 | 300 | 0.4 | 有 | 2.08 | 1.71 | 0.74 | 1.37 |
表3 节点模型信息 (mm)
Table 3 Node model information
分组 | 试件编码 | d/mm | 钢梁高度/mm | 加劲肋 | 拉筋高度h1/mm | n | 拉筋 | ρsa/% | ki | km | kl |
---|---|---|---|---|---|---|---|---|---|---|---|
第 1 组 | J1-LS1 | — | 194 | 无 | — | 0.2 | 无 | — | 1.63 | 0.65 | 1.30 |
GLS1 | — | 194 | 有 | — | 0.2 | 无 | — | 1.88 | 0.79 | 1.50 | |
GLS2 | 8 | 194 | 有 | 200 | 0.2 | 有 | 0.57 | 1.84 | 0.73 | 1.47 | |
GLS3 | 10 | 194 | 有 | 200 | 0.2 | 有 | 0.90 | 1.67 | 0.70 | 1.33 | |
GLS4 | 12 | 194 | 有 | 200 | 0.2 | 有 | 1.29 | 1.57 | 0.65 | 1.25 | |
GLS5 | — | 250 | 无 | — | 0.2 | 无 | — | 2.09 | 0.87 | 1.67 | |
GLS6 | 8 | 250 | 无 | 200 | 0.2 | 有 | 0.57 | 2.05 | 0.81 | 1.64 | |
CLS7 | 10 | 250 | 无 | 200 | 0.2 | 有 | 0.90 | 1.85 | 0.77 | 1.48 | |
CLS8 | 12 | 250 | 无 | 200 | 0.2 | 有 | 1.29 | 1.74 | 0.72 | 1.39 | |
第 2 组 | J1-LS1 | — | 194 | 无 | — | 0.4 | 无 | — | 1.68 | 0.72 | 1.34 |
GLS1 | — | 194 | 有 | — | 0.4 | 无 | — | 1.94 | 0.88 | 1.55 | |
GLS2 | 8 | 194 | 有 | 300 | 0.4 | 有 | 0.86 | 1.67 | 0.81 | 1.33 | |
GLS3 | 10 | 194 | 有 | 300 | 0.4 | 有 | 1.35 | 1.57 | 0.77 | 1.25 | |
GLS4 | 12 | 194 | 有 | 300 | 0.4 | 有 | 2.08 | 1.54 | 0.67 | 1.23 | |
GLS5 | — | 250 | 无 | — | 0.4 | 无 | — | 2.15 | 0.97 | 1.72 | |
GLS6 | 8 | 250 | 无 | 300 | 0.4 | 有 | 0.86 | 1.85 | 0.90 | 1.48 | |
CLS7 | 10 | 250 | 无 | 300 | 0.4 | 有 | 1.35 | 1.74 | 0.85 | 1.39 | |
CLS8 | 12 | 250 | 无 | 300 | 0.4 | 有 | 2.08 | 1.71 | 0.74 | 1.37 |
图6 构造方法对组合节点滞回和骨架曲线的影响(a)—钢梁尺寸对滞回曲线的影响; (b)—钢梁尺寸对骨架曲线的影响; (c)—拉筋对高轴压比节点滞回曲线的影响.
Fig.6 Influence of construction method on combined node hysteresis and skeleton curve
分组 | 试件 | 轴压比 | 总塑性耗能/kJ | 耗能占比/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CFST柱 | 钢梁 | 端板 | 楼板 | 螺栓 | 栓钉 | 加劲肋 | 拉筋 | ||||
第 1 组 | J1-LS1 | 0.2 | 116.43 | 5.1 | 49.3 | 21.0 | 21.1 | 2.4 | 1.1 | 0.0 | 0.0 |
GLS1 | 0.2 | 154.73 | 6.3 | 61.0 | 12.2 | 14.8 | 0.9 | 1.0 | 3.8 | 0.0 | |
GLS2 | 0.2 | 156.24 | 4.1 | 64.7 | 9.4 | 14.0 | 0.8 | 0.4 | 5.5 | 1.1 | |
GLS3 | 0.2 | 155.35 | 3.1 | 67.8 | 8.9 | 12.6 | 1.1 | 0.2 | 5.4 | 0.9 | |
GLS4 | 0.2 | 156.68 | 5.7 | 63.8 | 9.6 | 13.3 | 1.0 | 0.3 | 5.3 | 1.0 | |
GLS5 | 0.2 | 182.46 | 5.4 | 69.9 | 11.2 | 12.2 | 1.1 | 0.2 | 0.0 | 0.0 | |
GLS6 | 0.2 | 184.52 | 5.7 | 67.7 | 10.8 | 13.3 | 0.9 | 0.6 | 0.0 | 1.0 | |
CLS7 | 0.2 | 183.48 | 0.9 | 74.6 | 10.6 | 11.2 | 1.2 | 0.3 | 0.0 | 1.2 | |
CLS8 | 0.2 | 186.64 | 4.7 | 71.2 | 9.9 | 12.3 | 0.8 | 0.2 | 0.0 | 0.9 |
表4 节点总塑性耗能与部件塑性耗能
Table 4 Total plastic energy consumption of joints and plastic energy consumption of components
分组 | 试件 | 轴压比 | 总塑性耗能/kJ | 耗能占比/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CFST柱 | 钢梁 | 端板 | 楼板 | 螺栓 | 栓钉 | 加劲肋 | 拉筋 | ||||
第 1 组 | J1-LS1 | 0.2 | 116.43 | 5.1 | 49.3 | 21.0 | 21.1 | 2.4 | 1.1 | 0.0 | 0.0 |
GLS1 | 0.2 | 154.73 | 6.3 | 61.0 | 12.2 | 14.8 | 0.9 | 1.0 | 3.8 | 0.0 | |
GLS2 | 0.2 | 156.24 | 4.1 | 64.7 | 9.4 | 14.0 | 0.8 | 0.4 | 5.5 | 1.1 | |
GLS3 | 0.2 | 155.35 | 3.1 | 67.8 | 8.9 | 12.6 | 1.1 | 0.2 | 5.4 | 0.9 | |
GLS4 | 0.2 | 156.68 | 5.7 | 63.8 | 9.6 | 13.3 | 1.0 | 0.3 | 5.3 | 1.0 | |
GLS5 | 0.2 | 182.46 | 5.4 | 69.9 | 11.2 | 12.2 | 1.1 | 0.2 | 0.0 | 0.0 | |
GLS6 | 0.2 | 184.52 | 5.7 | 67.7 | 10.8 | 13.3 | 0.9 | 0.6 | 0.0 | 1.0 | |
CLS7 | 0.2 | 183.48 | 0.9 | 74.6 | 10.6 | 11.2 | 1.2 | 0.3 | 0.0 | 1.2 | |
CLS8 | 0.2 | 186.64 | 4.7 | 71.2 | 9.9 | 12.3 | 0.8 | 0.2 | 0.0 | 0.9 |
图8 各轴压比下组合节点梁柱塑性耗能分配规律(a)—J1-LS1; (b)—GLS1; (c)—GLS2; (d)—GLS3; (e)—GLS4; (f)—GLS5; (g)—GLS6; (h)—GLS7; (i)—GLS7.
Fig.8 Distribution law of plastic energy dissipation of composite joint beam‑column under different axial pressure ratios
1 | Nguyen T T, Thai H T, Ngo T,et al.Behaviour and design of high strength CFST columns with slender sections[J].Journal of Constructional Steel Research,2021,182:106645. |
2 | Xu L, Pan J L, Yang X.Mechanical performance of self‑stressing CFST columns under uniaxial compression[J].Journal of Building Engineering,2021,44:103366. |
3 | Li W, Xu L F, Qian W W.Seismic performance of concrete‑encased CFST column to steel beam joints with different connection details[J].Engineering Structures,2020,204:109875. |
4 | Engehardt M D, Sabot T A.Seismic‑resistant steel moment connections:developments since the 1994 Northridge earthquake[J].Progress in Structural Engineering and Materials,1997,1(1):68-77. |
5 | Architectural Institute of Japan .Reconnaissance report on damage to steel building structures observed from the 1995 Hyogoken‑Nanhu(Hanshin/Awaji) earthquake[R].Tokyo:Architectural Institute of Japan,1995. |
6 | 袁定强,苏旭耀,郭皓,等.1999年台湾集集7.6级地震对大陆地区影响烈度调查及研究[J].中国地震,2008,24(2):116-125. |
Yuan Ding‑qiang, Su Xu‑yao, Guo Hao,et al.The survey and research on influencing intensity of 1999 Taiwan Chi‑Chi MS7.6 earthquake in the Chinese continent region[J].Earthquake Research in China,2008,24(2):116-125. | |
7 | Guo L, Wang J F, Wang W Q,et al.Seismic evaluation and calculation models of CFDST column blind bolted to composite beam joints with partial shear interaction[J].Engineering Structures,2019,196:109269. |
8 | 何益斌,黄频,郭健,等.方钢管钢骨混凝土柱与钢梁端板螺栓连接节点抗震性能试验研究[J].建筑结构学报,2012,33(7):116-125. |
He Yi‑bin, Huang Pin, Guo Jian,et al.Experimental study on seismic behavior of steel‑reinforced concrete square column and steel beam joint with bolted end‑plate[J].Journal of Building Structures,2012,33(7):116-125. | |
9 | Tao Z, Li W, Shi B L.Behaviour of bolted end‑plate connections to concrete‑filled steel columns[J].Journal of Constructional Steel Research,2017,134:194-208. |
10 | 李国强,段炼,陆烨,等.H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J].建筑结构学报,2015,36(9):91-100. |
Li Guo‑qiang, Duan Lian, Lu Ye,et al.Experimental and theoretical study of bearing capacity for extended endplate connections between rectangular tubular columns and H-shaped beams with single direction bolts[J].Journal of Building Structures,2015,36(9):91-100. | |
11 | 宗周红,林于东,陈慧文,等.方钢管混凝土柱与钢梁连接节点的拟静力试验研究[J].建筑结构学报,2005,26(1):77-84. |
Zong Zhou‑hong, Lin Yu‑dong, Chen Hui‑wen,et al.Quasi‑static test on concrete‑filled square steel tube column to steel beam connections[J].Journal of Building Structures,2005,26(1):77-84. | |
12 | Tao Z, Hassan M K, Song T Y,et al.Experimental study on blind bolted connections to concrete‑filled stainless steel columns[J].Journal of Constructional Steel Research,2016,128:825-838. |
13 | 徐庆元,雷建雄,丁发兴,等.方钢管混凝土柱穿入式组合节点耗能机制[J].工程力学,2025,42(1):116-128. |
Xu Qing‑Yuan, Lei Jian‑xiong, Ding Fa‑xing,et al.Energy dissipation mechanism of perforated composite joints for concrete‑filled square steel tube columns[J].Engineering Mechanics,2025,42(1):116-128. | |
14 | Sun H, Ding F X, Wang L P,et al.Experimental and analytical study of thin‑walled stirrup‑confined CFST piers under pseudo‑static loading[J].Journal of Constructional Steel Research,2023,210:108047. |
15 | Ding F X, Pan Z C, Liu P.Influence of stiffeners on the performance of blind‑bolt end‑plate connections to CFST columns[J].Steel and Composite Structures,2020,36(4):447-462. |
16 | 丁发兴,卫心怡,潘志成,等.高轴压比方形钢管混凝土柱-组合梁单边栓连刚接节点抗震性能试验研究[J].建筑结构学报,2023,44(7):105-115. |
Ding Fa‑xing, Wei Xin‑yi, Pan Zhi‑cheng,et al.Experimental study on seismic performance of concrete‑filled steel tube column and composite beam with single side bolt connection[J]. Journal of Building Structure,2023,44(7):105-115. | |
17 | Ding F X, Cao Z Y, LÜ F,et al.Practical design equations of the axial compressive capacity of circular CFST stub columns based on finite element model analysis incorporating constitutive models for high‑strength materials[J].Case Studies in Construction Materials,2022,16:e01115. |
18 | Ding F X, Wu X, Xiang P,et al.New damage ratio strength criterion for concrete and lightweight aggregate concrete[J].ACI Structural Journal,2021,118(6):165-178. |
19 | Sun H, Xu Q Y, Ding F X,et al.Seismic behavior of thin‑walled stirrup‑confined circular concrete‑filled steel tube piers:experimental,numerical,and restoring force model analysis[J].Soil Dynamics and Earthquake Engineering,2024,176:108310. |
20 | Ding F X, Yin G A, Wang L P,et al.Seismic performance of a non‑through‑core concrete between concrete‑filled steel tubular columns and reinforced concrete beams[J].Thin-Walled Structures,2017,110:14-26. |
21 | Luo L, Ding F X, Wang L,et al.Plastic hinge and seismic structural measures of terminal stirrup‑confined rectangular CFT columns under low‑cyclic load[J].Journal of Building Engineering,2020,34(4):101908. |
22 | Sorenson H K.ABAQUS version 6.4:theory manual,users’ manual,verification manual and example problems manual[EB/OL].(2004-09-01)[2023-06-25].. |
23 | 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:(2016年版)[S].北京:中国建筑工业出版社,2016. |
Ministry of Housing and Urban‑Rural Development of the People's Republic of China. Code for seismic design of buildings:(2016 edition)[S].Beijing:China Architecture and Building Press,2016. |
[1] | 罗忠, 罗永恒, 熊鑫, 吴法勇. 装配工艺参数对止口螺栓连接结构力学特性的影响分析[J]. 东北大学学报(自然科学版), 2024, 45(9): 1268-1276. |
[2] | 黄贤振, 于瑞, 姜智元, 荣治明. 考虑热误差的电主轴建模与可靠性全局灵敏度分析[J]. 东北大学学报(自然科学版), 2024, 45(5): 675-682. |
[3] | 丁发兴, 束舒东, 张经科, 何畅. 开口截面钢-混凝土组合梁纯扭力学性能[J]. 东北大学学报(自然科学版), 2024, 45(10): 1485-1493. |
[4] | 张东祥, 张弛, 范威, 郭立新. 人工锥体的尺寸对颈椎力学特性的影响[J]. 东北大学学报(自然科学版), 2023, 44(8): 1136-1143. |
[5] | 罗忠 , 石宝龙 , 张小霞 , 吴法勇. 拧紧工艺的螺栓连接结构预紧力变化规律[J]. 东北大学学报(自然科学版), 2023, 44(2): 215-222. |
[6] | 李艳艳, 潘进, 岳圆圆, 张亚龙. HRB600E高强钢筋混凝土柱抗震性能及恢复力特性[J]. 东北大学学报(自然科学版), 2023, 44(1): 130-137. |
[7] | 彭立港, 孙一李全, 赵羽习, 袁静. 钢框架-再生混凝土空心条板填充墙的抗震性能[J]. 东北大学学报(自然科学版), 2022, 43(8): 1183-1191. |
[8] | 安国青, 王蕊, 赵晖, 李铁英. 双钢板混凝土组合板在撞击荷载下的动力响应[J]. 东北大学学报(自然科学版), 2022, 43(8): 1192-1200. |
[9] | 王连广, 蒙玉琪, 王梓晴. 预制压型钢板混凝土组合板和钢梁连接及其有限元分析[J]. 东北大学学报(自然科学版), 2022, 43(4): 575-581. |
[10] | 陈小辉, 张珩, 刘明月, 侯东晓. 开孔碳纤维复合材料层合板的拉伸失效有限元分析[J]. 东北大学学报(自然科学版), 2022, 43(3): 397-403. |
[11] | 马辉, 高昂, 杨天瑞, 官宏. 止口及螺栓对法兰盘结构静力学特性的影响[J]. 东北大学学报(自然科学版), 2022, 43(10): 1438-1445. |
[12] | 王浩, 赵欣, 马国伟. 板式模块化钢结构节点抗震性能试验研究[J]. 东北大学学报(自然科学版), 2022, 43(10): 1484-1491. |
[13] | 高幸, 贾金青, 王维玉, 张丽华. 橡胶混凝土与常规混凝土组合桩抗震性能研究[J]. 东北大学学报(自然科学版), 2021, 42(6): 886-892. |
[14] | 牟在根, 大海, 杨雨青, 王喆. 全螺栓连接和焊接连接钢板剪力墙力学性能分析[J]. 东北大学学报(自然科学版), 2021, 42(3): 428-435. |
[15] | 戎贤, 陈磊, 张健新. 装配式钢管混凝土柱梁下栓上焊节点抗震性能试验[J]. 东北大学学报:自然科学版, 2020, 41(9): 1348-1355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||