东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 18-26.DOI: 10.12068/j.issn.1005-3026.2025.20240058

• 信息与控制 • 上一篇    下一篇

LIDD-Net:基于深度学习的轻量级工业产品缺陷检测方法

沙晓鹏, 谢德瀚, 郭周鹏, 孙凯   

  1. 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
  • 收稿日期:2024-03-12 出版日期:2025-10-15 发布日期:2026-01-13
  • 作者简介:沙晓鹏(1983—),女,河北邢台人,东北大学秦皇岛分校副研究员.
  • 基金资助:
    河北省中央引导地方科技发展资金项目(246Z2002G);中央高校基本科研业务费专项资金资助项目(2025GFZD002)

LIDD-Net: Lightweight Industrial Product Defect Detection Method Based on Deep Learning

Xiao-peng SHA, De-han XIE, Zhou-peng GUO, Kai SUN   

  1. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China. Corresponding author: SHA Xiao-peng,E-mail: shaxiaopeng@neuq. edu. cn
  • Received:2024-03-12 Online:2025-10-15 Published:2026-01-13

摘要:

工业产品中存在各种缺陷,且不同类型缺陷之间存在着高度相似、尺度变化大、背景信息复杂等问题.为解决这些问题,本文提出了轻量级工业缺陷检测网络(LIDD-Net).针对相似度高的不同种类缺陷,LIDD-Net设计了通道交互分离骨干网络,在降低模型计算量的同时提高了特征提取能力;针对不同尺度的缺陷,LIDD-Net提出了轻量化特征融合网络RepGhostPAN,在能融合图像中多尺度特征的同时提高了推理速度;针对检测背景的复杂性,LIDD-Net提出了轻量辅助训练模块,通过使用辅助训练头和动态软标签分配策略,可更好地区分目标缺陷与复杂背景.通过在钢材缺陷、铝缺陷和轮胎缺陷数据集的实验结果表明,LIDD-Net在参数量仅为0.62×106的情况下分别获得了98.3%,98.1%和96.1%的mAP@0.5,可以满足工业现场实际需求.

关键词: 工业缺陷检测, 轻量化检测网络, 特征融合, 结构重参数化, 注意力机制

Abstract:

In industrial products, various types of defects often exhibit high inter-class similarity, large scale variations, and complex backgrounds. To address these challenges, a lightweight industrial defect detection network (LIDD-Net) was proposed. To handle highly similar defect types, in LIDD-Net, a channel interaction separation backbone network was introduced, which enhanced feature extraction while reducing the computational cost of the model. To address multi-scale defect variations, a lightweight feature fusion network was developed, namely RepGhostPAN, to efficiently integrate multi-scale features in the image and accelerate inference. For complex detection backgrounds, a lightweight auxiliary training module was proposed, leveraging an auxiliary training head and a dynamic soft label assignment strategy to better distinguish target defects from complex backgrounds. Experiments on steel, aluminum, and tire defect datasets demonstrate that LIDD-Net achieves mAP@0.5 scores of 98.3%, 98.1%, and 96.1%, respectively, with only 0.62×106 parameters, meeting practical industrial requirements.

Key words: industrial defect detection, lightweight detection network, feature fusion, structural reparameterization, attention mechanism

中图分类号: