东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (12): 9-18.DOI: 10.12068/j.issn.1005-3026.2025.20240095

• 信息与控制 • 上一篇    下一篇

考虑碳排放的双目标车货匹配问题研究

黄敏1(), 都业新1, 于昊1, 王兴伟2   

  1. 1.东北大学 信息科学与工程学院,辽宁 沈阳 110819
    2.东北大学 计算机科学与工程学院,辽宁 沈阳 110169
  • 收稿日期:2024-04-22 出版日期:2025-12-15 发布日期:2026-02-09
  • 通讯作者: 黄敏
  • 作者简介:王兴伟(1968—),男,辽宁盖州人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2021YFB3300900);国家自然科学基金重大研究计划重点支持项目(92267206);国家自然科学基金重点资助项目(62032013)

Research on Bi-objective Vehicle-Cargo Matching Problem Considering Carbon Emissions

Min HUANG1(), Ye-xin DU1, Hao YU1, Xing-wei WANG2   

  1. 1.School of Information Science & Engineering,Northeastern University,Shenyang 110819,China
    2.School of Computer Science & Engineering,Northeastern University,Shenyang 110169,China.
  • Received:2024-04-22 Online:2025-12-15 Published:2026-02-09
  • Contact: Min HUANG

摘要:

针对车货匹配平台决策中未充分考虑碳排放影响的问题,提出了考虑碳排放和平台收益的双目标车货匹配模型.首先,构建以最小化总碳排放量和最大化车货匹配平台收益为双目标、以载重和时间为约束的优化模型.其次,针对模型的多目标和NP(non-deterministic polynomial)难特性,设计包含嵌入可行性分析的编码规则、自适应精英保留策略和非线性递减惯性权重的多目标粒子群优化(PSO)算法.3种规模算例的对比结果表明,该算法在收敛性和均匀性上优于NSPSO算法、改进的NSGA-II算法和多目标灰狼算法,运行时间也优于后两种算法.最后通过分析货车单位碳排放量和货主送达时间要求对碳排放的影响,为平台决策提供管理启示.

关键词: 车货匹配, 多目标优化, 同城货运, 碳排放, 粒子群优化算法

Abstract:

To address the issue of insufficient consideration of carbon emissions in vehicle-cargo matching platform decision-making, a bi-objective vehicle-cargo matching model that considers both carbon emissions and platform revenue was proposed. Firstly, an optimization model was constructed with the objectives of minimizing total carbon emissions and maximizing vehicle-cargo matching platform revenue, with load and time constraints. Secondly, to address the model’s multi-objective and non-deterministic polynomial (NP) hard nature, a multi-objective particle swarm optimization (PSO) algorithm was designed, including encoding rules embedded in feasibility analysis, an adaptive elite retention strategy, and a nonlinear decreasing inertia weight. Comparative results on three large-scale examples demonstrate that the proposed algorithm outperforms the NSPSO algorithm, the improved NSGA-II algorithm, and the multi-objective grey wolf algorithm in terms of convergence and uniformity, and it is superior to the latter two algorithms in terms of runtime. Finally, by analyzing the impact of carbon emissions per truck and consignors’ delivery time requirements on carbon emissions, the proposed algorithm provides management insights for platform decision-making.

Key words: vehicle-cargo matching, multi-objective optimization, intra-city freight, carbon emission, particle swarm optimization algorithm

中图分类号: