| [1] |
Ma H J, Jung W K, Yong S M, et al. Microstructural freezing of highly NIR transparent Y2O3-MgO nanocomposite via pressure-assisted two-step sintering [J]. Journal of the European Ceramic Society, 2019, 39(15): 4957-4964.
|
| [2] |
李 江,姜 楠,徐圣泉,等 .红外透明MgO-Y2O3复相陶瓷研究进展[J].硅酸盐学报,2016, 44(9): 1302-1314.
|
|
Li Jiang, Jiang Nan, Xu Sheng-quan, et al. Recent development on infrared transparent MgO-Y2O3 nanocomposite ceramics [J]. Journal of the Chinese Ceramic Society, 2016, 44(9): 1302-1314.
|
| [3] |
Liu L H, Morita K, Suzuki T S, et al. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering[J]. Journal of the European Ceramic Society, 2020, 40(13): 4547-4555.
|
| [4] |
Wu N, Li X D, Zhang M, et al. Synthesis of nanopowders with low agglomeration by elaborating Φ values for producing Gd2O3-MgO nanocomposites with extremely fine grain sizes and high mid-infrared transparency[J]. Journal of the European Ceramic Society, 2021, 41(4): 2898-2907.
|
| [5] |
魏玉静,方海亮,邱小小,等 .SPS制备MgO-Y2O3复相陶瓷及其性能研究[J].硅酸盐通报,2020, 39(7): 2274-2280.
|
|
Wei Yu-jing, Fang Hai-liang, Qiu Xiao-xiao, et al. Preparation and performance research of MgO-Y2O3 composite ceramics by SPS [J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2274-2280.
|
| [6] |
Brard N, Petit J, Emery N, et al. Control of the nanostructure of MgO-Y2O3 composite ceramics using two-step sintering for high temperature mid infrared window applications [J]. Ceramics International, 2023, 49(11): 18187-18194.
|
| [7] |
Liu Z Y, Ikesue A, Li J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics [J]. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910.
|
| [8] |
Harris D C, Cambrea L R, Johnson L F, et al. Properties of an infrared-transparent MgO∶Y2O3 nanocomposite[J]. Journal of the American Ceramic Society, 2013, 96(12): 3828-3835.
|
| [9] |
Permin D, Belyaev A, Koshkin V, et al. Erbium-doped Lu2O3-MgO and Sc2O3-MgO IR-transparent composite ceramics [J]. Nanomaterials, 2023, 13(10): 1620-1632.
|
| [10] |
Kränkel C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602013.
|
| [11] |
Yang C L, Huang J Q, Huang Q F, et al. Optical, thermal, and mechanical properties of (Y1- x Sc x )2O3 transparent ceramics [J]. Journal of Advanced Ceramics, 2022, 11(6): 901-911.
|
| [12] |
Du P P, Huo D, Xi H Q, et al. Fabrication of nanocrystalline Sc2O3-Y2O3 solid solution ceramics by spark plasma sintering [J]. Ceramics International, 2017, 43(13): 9854-9859.
|
| [13] |
Zhang X, Gao S, Gui W H, et al. First-principles study of structure, mechanical and optical properties of La- and Sc- doped Y2O3 [J]. Journal of Rare Earths, 2019, 37(8): 879-885.
|
| [14] |
Jin L L, Zhou G H, Shimai S Z, et al. ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering [J]. Journal of the European Ceramic Society, 2010, 30(10): 2139-2143.
|
| [15] |
Wang J, Yin D L, Ma J, et al. Pump laser induced photodarkening in ZrO2-doped Yb:Y2O3 laser ceramics [J]. Journal of the European Ceramic Society, 2019, 39(2/3): 635-640.
|
| [16] |
Ren Y, Li X D, Zhang Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3: Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state [J]. Ceramics International, 2023, 49(11): 18541-18551.
|
| [17] |
Ren Y, Li X D, Mu H J, et al. The origin of microstructural inhomogeneity in vacuum-sintered ZrO2-doped Lu2O3 transparent ceramics [J]. Journal of the American Ceramic Society, 2024, 107(2): 1105-1116.
|
| [18] |
Zhang L, Pan W. Structural and thermo-mechanical properties of Nd:Y2O3 transparent ceramics [J]. Journal of the American Ceramic Society, 2015, 98(10): 3326-3331.
|
| [19] |
Zhou H X, Yang Q H, Xu J, et al. Preparation and spectroscopic properties of 2% Nd:(Y0.9La0.1)2O3 transparent ceramics [J]. Journal of Alloys and Compounds, 2009, 471(1/2): 474-476.
|
| [20] |
Lashneva V V, Dubok V A. Electroconductivity of the oxide interlanthanoids with perovskite structure [C]// Fuel Cell Technologies: State and Perspectives. Dordrecht: Springer, 2005: 259-264.
|
| [21] |
Sviridova R K, Arsen'ev P A. The spectra of ScYO3 crystals containing Nd3+ ions [J]. Journal of Applied Spectroscopy, 1972, 17(5): 1482-1483.
|
| [22] |
Yong S M, Choi D H, Lee K, et al. Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites [J]. Journal of Ceramic Processing Research, 2019, 20(1): 59-62.
|
| [23] |
Muoto C K, Jordan E H, Gell M, et al. Phase homogeneity in Y2O3-MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions [J]. Journal of the American Ceramic Society, 2011, 94(12): 4207-4217.
|
| [24] |
Wang J W, Chen D Y, Jordan E H, et al. Infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powder [J]. Journal of the American Ceramic Society, 2010, 93(11): 3535-3538.
|
| [25] |
Li X K, Mao X J, Feng M H, et al. Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics [J]. Journal of the European Ceramic Society, 2016, 36(16): 4181-4184.
|
| [26] |
Hou X R, Zhou S M, Li W J, et al. Study on the effect and mechanism of zirconia on the sinterability of yttria transparent ceramic [J]. Journal of the European Ceramic Society, 2010, 30(15): 3125-3129.
|
| [27] |
Chen P L, Chen I W. Grain boundary mobility in Y2O3: defect mechanism and dopant effects [J]. Journal of the American Ceramic Society, 1996, 79(7): 1801-1809.
|
| [28] |
Furuse H, Horiuchi N, Kim B N. Transparent non-cubic laser ceramics with fine microstructure [J]. Scientific Reports, 2019, 9: 10300.
|
| [29] |
Zhang H T, Yang J, Brown J A, et al. La3+ and Er3+ Co-doped Y2O3 transparent ceramics with a tunable refractive index and long coherence lifetime [J]. Optical Materials Express, 2020, 10(1): 99-104.
|
| [30] |
Zhang L L, Fan J T, Qian K C, et al. Enhanced near-infrared transmission of ZnO-doped Y2O3-MgO nanocomposites with reduced light scattering due to decreased refractive index difference [J]. Journal of the European Ceramic Society, 2022, 42(11): 4616-4622.
|