东北大学学报(自然科学版) ›› 2006, Vol. 27 ›› Issue (1): 13-16.DOI: -

• 论著 • 上一篇    下一篇

遗传神经网络法及其在机器人误差补偿中的应用

王东署;迟健男;徐方;徐心和;   

  1. 东北大学教育部暨辽宁省流程工业综合自动化重点实验室;东北大学教育部暨辽宁省流程工业综合自动化重点实验室;沈阳新松机器人与自动化股份有限公司;东北大学教育部暨辽宁省流程工业综合自动化重点实验室 辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110168;辽宁沈阳110004
  • 收稿日期:2013-06-23 修回日期:2013-06-23 出版日期:2006-01-15 发布日期:2013-06-23
  • 通讯作者: Wang, D.-S.
  • 作者简介:-
  • 基金资助:
    国家高技术研究发展计划项目(2001AA422270)

Genetic neural network and its application in robot error compensation

Wang, Dong-Shu (1); Chi, Jian-Nan (1); Xu, Fang (2); Xu, Xin-He (1)   

  1. (1) Key Laboratory of Process Industry Automation of Liaoning Province, Northeastern University, Shenyang 110004, China; (2) Shenyang SIASUN Robot and Automation Co. Ltd., Shenyang 110168, China
  • Received:2013-06-23 Revised:2013-06-23 Online:2006-01-15 Published:2013-06-23
  • Contact: Wang, D.-S.
  • About author:-
  • Supported by:
    -

摘要: 针对某打磨机器人的位姿误差分析,提出一种采用二进制和实数值混合编码的遗传BP网络法,同时优化网络结构和权值矢量;网络结构采用二进制编码保留了粒度编码方法的优点,对连接权值系数的实数编码进行Solis&Wets运算使新的遗传算法具有进化规划和进化策略的优点;结合遗传算子和Solis&Wets算子生成后代的方法以及最佳个体保留策略使得遗传搜索空间的群体多样性更好,加快了遗传算法的收敛速度;采用动态参数编码方法替代Vittorio粒度编码方法,既提高了连接权系数的优化精度,又避免了Vittorio粒度变化所引起的适应度的剧烈不连续变化.仿真和实验结果均表明该算法能有效克服遗传算法的非成熟收敛,提高机...

关键词: 机器人, 位姿误差, 遗传算法, 人工神经网络, Solis&Wets算子

Abstract: For the pose error analysis of a polishing robot, on the basis of Vittorio granularity coding method, an improved genetic neural BP network combining binary with real-value coding is proposed with the network architecture and weight vectors optimized. Introducing the binary coding in network architecture to keep the virtues of Vittorio granularity encoding, real-value coding with connecting weighting coefficients, Solis and Wets operation is carried out to bring the virtues of evolutionary programming and evolutionary strategy to the new genetic algorithm. In addition, the combination of genetic algorithm with progeny generated by Solis and Wets operation and optimized individual selection make the genetic search space more diverse to accelerate the genetic algorithm's convergence, with the dynamic parameter coding used instead of Vittorio granularity coding. Optimization of connecting weighting coefficient will be more accurate, and the sharply discontinuous change of adaptability due to Vittorio granularity change can be avoided. Simulation and experimental results indicate that this algorithm can eliminate genetic algorithm's premature convergence and improve effectively the robot pose accuracy.

中图分类号: