东北大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (8): 1074-1077.DOI: -

• 论著 • 上一篇    下一篇

基于遗传算法的协同优化方法

李海燕;井元伟;张闻雷;   

  1. 东北大学流程工业综合自动化教育部重点实验室;东北大学信息科学与工程学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2009-08-15 发布日期:2013-06-22
  • 通讯作者: Li, H.-Y.
  • 作者简介:-
  • 基金资助:
    解放军总装备部武器装备预研基金资助项目(9140A18010106LN0101);;

A new collaborative optimization based on genetic algorithm

Li, Hai-Yan (1); Jing, Yuan-Wei (2); Zhang, Wen-Lei (1)   

  1. (1) Key Laboratory of Integrated Automation of Process Industry Ministry of Education, Northeastern University, Shenyang 110004, China; (2) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2009-08-15 Published:2013-06-22
  • Contact: Li, H.-Y.
  • About author:-
  • Supported by:
    -

摘要: 针对协同优化的系统级优化可行域可能不存在的问题,采用遗传算法,并借鉴逐步增强约束强度的思想,提出了基于遗传算法的协同优化算法.该算法利用各子学科返回的优化值,计算种群中个体的不可行度,根据不可行度和阈值来判定该个体是否为可行解.提出利用循环迭代次数调整阈值的方法,保证了系统级优化向一致性等式约束不满足度减小的方向进行,达到了有效增强子学科间一致性的目的.最后,利用减速器典型算例对该方法进行了验证,结果表明该方法的优化性能良好.

关键词: 多学科设计优化, 协同优化, 遗传算法, 不可行度, 学科间一致性

Abstract: In view of that the feasible region is possibly inexistent during the collaborative optimization at system level, the genetic algorithm (GA) is introduced in combination with strengthening the constraint conditions step by step to develop a new GA-based collaborative optimization algorithm. In this algorithm the individual in feasibility in population is computed with the optimal values resulting from subsystems, then whether the solution to an individual is feasible depends on the infeasibility and its threshold. A method to adjust the threshold is proposed via cyclic iteration steps to ensure that the optimization at system level will go towards decreasing the unsatisfiability of constraint on consistency equality, thus achieving the goal to enhance the interdisciplinary consistency. Taking the design of a speed reducer as example, the performance of the optimization algorithm is proved excellent.

中图分类号: