东北大学学报(自然科学版) ›› 2012, Vol. 33 ›› Issue (1): 47-51.DOI: -
依玉峰;高立群;郭丽;
Yi, Yu-Feng (1); Gao, Li-Qun (1); Guo, Li (2)
摘要: 提出了一种改进的和声搜索算法并应用到聚类分析中.首先,将状态反馈机制引入到和声搜索算法中,通过判断和声记忆库中"最优"和声和"最差"和声之间的差异,来动态调整和声记忆库考虑概率和移动步长,使算法能够快速地收敛到全局最优解.通过更新和声向量中精度变量对应的聚类中心来最小化目标函数值,获得数据样本的最优划分.其次,提出了一种数据样本真实聚类中心数的确定方法,当输入样本数大于真实聚类中心数时,通过计算能够自动地确定数据样本真实聚类中心数目.最后,应用4种性能指标来比较所提算法与蚁群聚类算法和原始和声搜索聚类算法的性能.结果表明,所提算法的性能优于另两种算法.
中图分类号: