东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (3): 389-393.DOI: 10.12068/j.issn.1005-3026.2018.03.017

• 机械工程 • 上一篇    下一篇

基于循环配送策略的汽车装配线物料配送调度方法

周炳海, 谭芬   

  1. (同济大学 机械与能源工程学院, 上海201804)
  • 收稿日期:2016-10-10 修回日期:2016-10-10 出版日期:2018-03-15 发布日期:2018-03-09
  • 通讯作者: 周炳海
  • 作者简介:冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.周炳海(1965-),男,浙江浦江人,同济大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51171041).国家自然科学基金资助项目(71471135) .

Scheduling Method of Material Delivery for Automotive Assembly Lines Based on Milk-Run Delivery

ZHOU Bing-hai, TAN Fen   

  1. School of Mechanical and Energy Engineering, Tongji University, Shanghai 201804, China.
  • Received:2016-10-10 Revised:2016-10-10 Online:2018-03-15 Published:2018-03-09
  • Contact: ZHOU Bing-hai
  • About author:-
  • Supported by:
    -

摘要: 为有效解决基于循环配送策略的汽车装配线物料配送调度问题,进行了改进型免疫克隆选择算法的调度方法研究.首先,建立了数学规划模型,以最小化计划期内所有工位的线边总库存为优化目标,并提出了改进型免疫克隆选择算法.在算法设计过程中融入了模拟退火算子和邻域搜索算子,分别对克隆种群和记忆库进行操作,以克服传统免疫克隆选择算法易陷入局部最优、搜索深度不足等缺陷.最后进行了仿真实验,表明该算法是有效、可行的.

关键词: 循环配送, 调度, 超市, 免疫克隆选择算法, 邻域搜索

Abstract: To efficiently solve the scheduling problem of material delivery for automotive assembly lines based on milk-run delivery, a scheduling method was developed by the modified immune clone selection algorithm. Firstly, a mathematical programming model was set up with an objective function of minimizing total inventory for all stations over the planning horizon. Then, a modified immune clone selection algorithm was developed to solve the proposed problem. Both the simulated annealing operator and neighborhood search operator were applied to clone population and memory vault, respectively, in the design of algorithm. It overcomes deficiencies of the traditional immune clone selection algorithm, such as tendencies to trap into local optima and limited search depth. Finally, the simulation experiments were carried out and the results indicate that the as-proposed algorithm is valid and feasible.

Key words: milk-run delivery, scheduling, supermarket, immune clone selection algorithm, neighborhood search

中图分类号: