东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (6): 789-794.DOI: 10.12068/j.issn.1005-3026.2019.06.006

• 信息与控制 • 上一篇    下一篇

基于信任模型的WSNs安全数据融合算法

叶正旺1,2, 温涛1,3, 刘振宇1,3, 付崇国1,3   

  1. (1. 东北大学 计算机科学与工程学院, 辽宁 沈阳110169; 2. 通化师范学院, 吉林 通化134002; 3. 大连东软信息学院, 辽宁 大连116023)
  • 收稿日期:2017-11-15 修回日期:2017-11-15 出版日期:2019-06-15 发布日期:2019-06-14
  • 通讯作者: 叶正旺
  • 作者简介:叶正旺(1982-),男,辽宁朝阳人,东北大学博士研究生; 温涛(1962-),男,辽宁大连人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61772101,61170169,61602075); 吉林省教育厅科学研究资助项目(JJKH20180861KJ).

An Algorithm of Trust-based Secure Data Aggregation for Wireless Sensor Networks

YE Zheng-wang1,2, WEN Tao1,3, LIU Zhen-yu1,3, FU Chong-guo1,3   

  1. 1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China; 2. Tonghua Normal University, Tonghua 134002, China; 3. Dalian Neusoft University of Information, Dalian 116023, China.
  • Received:2017-11-15 Revised:2017-11-15 Online:2019-06-15 Published:2019-06-14
  • Contact: YE Zheng-wang
  • About author:-
  • Supported by:
    -

摘要: 为了抵御无线传感器网络内部的恶意攻击行为和故障节点的误操作行为对数据融合结果的影响,提出一种基于信任模型的多层不均匀分簇无线传感器网络安全数据融合算法.该算法基于多层不均匀的分簇网络拓扑实现安全数据融合能够有效均衡网络中节点的能耗.通过节点间的通信行为和数据相关性建立信任评估模型,并引入动态的信任整合机制和更新机制,实现簇内和簇间的信任评估,选择可信融合节点并将可信节点所收集的数据进行基于信任值加权的数据融合.仿真实验表明,该算法能够实现精确的信任评估,有效识别内部恶意攻击节点,得到的数据融合结果具有较高的精确度,实现了安全的数据融合.

关键词: 安全, 数据融合, 信任模型, 无线传感器网络, 恶意节点

Abstract: To resist the influence of the malicious attacks and the malfunctions of fault nodes in wireless sensor networks(WSNs)on data aggregation, this paper proposes an algorithm of trust-based secure data aggregation for WSNs. The algorithm is based on multi-layer non-uniform clustering network topology to achieve secure data aggregation, which can effectively balance the network energy consumption. The trust evaluation model is established based on the communication behavior and data correlation among the nodes. The dynamic trust integration mechanism and update mechanism are introduced to realize the trust evaluation intra-cluster and inter-cluster. Based on the trust value, a trusted aggregation node is chosen in the cluster to complete data fusion of trusted nodes. Simulation results show that the algorithm can achieve accurate and effective trust evaluation, identify internal malicious nodes, and obtain the data aggregation results with high accuracy.

Key words: security, data aggregation, trust model, wireless sensor network, malicious node

中图分类号: